Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Genetics ; 220(4)2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35100366

RESUMO

PomBase (www.pombase.org), the model organism database (MOD) for the fission yeast Schizosaccharomyces pombe, supports research within and beyond the S. pombe community by integrating and presenting genetic, molecular, and cell biological knowledge into intuitive displays and comprehensive data collections. With new content, novel query capabilities, and biologist-friendly data summaries and visualization, PomBase also drives innovation in the MOD community.


Assuntos
Schizosaccharomyces , Biologia , Bases de Dados Factuais , Schizosaccharomyces/genética
2.
Open Biol ; 10(9): 200149, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32875947

RESUMO

Biological processes are accomplished by the coordinated action of gene products. Gene products often participate in multiple processes, and can therefore be annotated to multiple Gene Ontology (GO) terms. Nevertheless, processes that are functionally, temporally and/or spatially distant may have few gene products in common, and co-annotation to unrelated processes probably reflects errors in literature curation, ontology structure or automated annotation pipelines. We have developed an annotation quality control workflow that uses rules based on mutually exclusive processes to detect annotation errors, based on and validated by case studies including the three we present here: fission yeast protein-coding gene annotations over time; annotations for cohesin complex subunits in human and model species; and annotations using a selected set of GO biological process terms in human and five model species. For each case study, we reviewed available GO annotations, identified pairs of biological processes which are unlikely to be correctly co-annotated to the same gene products (e.g. amino acid metabolism and cytokinesis), and traced erroneous annotations to their sources. To date we have generated 107 quality control rules, and corrected 289 manual annotations in eukaryotes and over 52 700 automatically propagated annotations across all taxa.


Assuntos
Biologia Computacional/métodos , Ontologia Genética , Anotação de Sequência Molecular , Bases de Dados Genéticas , Evolução Molecular , Genoma Fúngico , Genômica/métodos , Controle de Qualidade , Schizosaccharomyces/genética , Navegador , Fluxo de Trabalho
3.
Database (Oxford) ; 20202020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32353878

RESUMO

Maximizing the impact and value of scientific research requires efficient knowledge distribution, which increasingly depends on the integration of standardized published data into online databases. To make data integration more comprehensive and efficient for fission yeast research, PomBase has pioneered a community curation effort that engages publication authors directly in FAIR-sharing of data representing detailed biological knowledge from hypothesis-driven experiments. Canto, an intuitive online curation tool that enables biologists to describe their detailed functional data using shared ontologies, forms the core of PomBase's system. With 8 years' experience, and as the author response rate reaches 50%, we review community curation progress and the insights we have gained from the project. We highlight incentives and nudges we deploy to maximize participation, and summarize project outcomes, which include increased knowledge integration and dissemination as well as the unanticipated added value arising from co-curation by publication authors and professional curators.


Assuntos
Schizosaccharomyces , Curadoria de Dados , Gerenciamento de Dados , Bases de Dados Factuais , Schizosaccharomyces/genética
4.
Open Biol ; 9(2): 180241, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30938578

RESUMO

The first decade of genome sequencing stimulated an explosion in the characterization of unknown proteins. More recently, the pace of functional discovery has slowed, leaving around 20% of the proteins even in well-studied model organisms without informative descriptions of their biological roles. Remarkably, many uncharacterized proteins are conserved from yeasts to human, suggesting that they contribute to fundamental biological processes (BP). To fully understand biological systems in health and disease, we need to account for every part of the system. Unstudied proteins thus represent a collective blind spot that limits the progress of both basic and applied biosciences. We use a simple yet powerful metric based on Gene Ontology BP terms to define characterized and uncharacterized proteins for human, budding yeast and fission yeast. We then identify a set of conserved but unstudied proteins in S. pombe, and classify them based on a combination of orthogonal attributes determined by large-scale experimental and comparative methods. Finally, we explore possible reasons why these proteins remain neglected, and propose courses of action to raise their profile and thereby reap the benefits of completing the catalogue of proteins' biological roles.


Assuntos
Células Eucarióticas/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Perfilação da Expressão Gênica , Ontologia Genética , Humanos , Proteoma/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Especificidade da Espécie
5.
Nucleic Acids Res ; 47(D1): D821-D827, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30321395

RESUMO

PomBase (www.pombase.org), the model organism database for the fission yeast Schizosaccharomyces pombe, has undergone a complete redevelopment, resulting in a more fully integrated, better-performing service. The new infrastructure supports daily data updates as well as fast, efficient querying and smoother navigation within and between pages. New pages for publications and genotypes provide routes to all data curated from a single source and to all phenotypes associated with a specific genotype, respectively. For ontology-based annotations, improved displays balance comprehensive data coverage with ease of use. The default view now uses ontology structure to provide a concise, non-redundant summary that can be expanded to reveal underlying details and metadata. The phenotype annotation display also offers filtering options to allow users to focus on specific areas of interest. An instance of the JBrowse genome browser has been integrated, facilitating loading of and intuitive access to, genome-scale datasets. Taken together, the new data and pages, along with improvements in annotation display and querying, allow users to probe connections among different types of data to form a comprehensive view of fission yeast biology. The new PomBase implementation also provides a rich set of modular, reusable tools that can be deployed to create new, or enhance existing, organism-specific databases.


Assuntos
Bases de Dados Genéticas , Genoma Fúngico/genética , Schizosaccharomyces/genética , Internet , Software , Interface Usuário-Computador
6.
Methods Mol Biol ; 1757: 49-68, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29761456

RESUMO

The fission yeast Schizosaccharomyces pombe has become well established as a model species for studying conserved cell-level biological processes, especially the mechanics and regulation of cell division. PomBase integrates the S. pombe genome sequence with traditional genetic, molecular, and cell biological experimental data as well as the growing body of large datasets generated by emerging high-throughput methods. This chapter provides insight into the curation philosophy and data organization at PomBase, and provides a guide to using PomBase for infrequent visitors and anyone considering exploring S. pombe in their research.


Assuntos
Bases de Dados Genéticas , Schizosaccharomyces/genética , Biologia Computacional , Ontologia Genética , Genoma Fúngico , Genômica/métodos , Anotação de Sequência Molecular , Software , Navegador
7.
BMC Biol ; 14: 49, 2016 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-27334346

RESUMO

Modern biomedical research depends critically on access to databases that house and disseminate genetic, genomic, molecular, and cell biological knowledge. Even as the explosion of available genome sequences and associated genome-scale data continues apace, the sustainability of professionally maintained biological databases is under threat due to policy changes by major funding agencies. Here, we focus on model organism databases to demonstrate the myriad ways in which biological databases not only act as repositories but actively facilitate advances in research. We present data that show that reducing financial support to model organism databases could prove to be not just scientifically, but also economically, unsound.


Assuntos
Pesquisa Biomédica , Bases de Dados Genéticas , Genoma Fúngico , Genômica , Biologia Molecular , Anotação de Sequência Molecular , Schizosaccharomyces/genética
8.
Nucleic Acids Res ; 43(Database issue): D656-61, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25361970

RESUMO

PomBase (http://www.pombase.org) is the model organism database for the fission yeast Schizosaccharomyces pombe. PomBase provides a central hub for the fission yeast community, supporting both exploratory and hypothesis-driven research. It provides users easy access to data ranging from the sequence level, to molecular and phenotypic annotations, through to the display of genome-wide high-throughput studies. Recent improvements to the site extend annotation specificity, improve usability and allow for monthly data updates. Both in-house curators and community researchers provide manually curated data to PomBase. The genome browser provides access to published high-throughput data sets and the genomes of three additional Schizosaccharomyces species (Schizosaccharomyces cryophilus, Schizosaccharomyces japonicus and Schizosaccharomyces octosporus).


Assuntos
Bases de Dados Genéticas , Schizosaccharomyces/genética , Expressão Gênica , Ontologia Genética , Genes Fúngicos , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Internet , Anotação de Sequência Molecular
9.
Biochim Biophys Acta ; 1838(12): 3036-51, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25157670

RESUMO

G protein-coupled receptors (GPCRs) are the largest family of cell-surface receptors in mammals and facilitate a range of physiological responses triggered by a variety of ligands. GPCRs were thought to function as monomers, however it is now accepted that GPCR homo- and hetero-oligomers also exist and influence receptor properties. The Schizosaccharomyces pombe GPCR Mam2 is a pheromone-sensing receptor involved in mating and has previously been shown to form oligomers in vivo. The first transmembrane domain (TMD) of Mam2 contains a small-XXX-small motif, overrepresented in membrane proteins and well-known for promoting helix-helix interactions. An ortholog of Mam2 in Saccharomyces cerevisiae, Ste2, contains an analogous small-XXX-small motif which has been shown to contribute to receptor homo-oligomerization, localization and function. Here we have used experimental and computational techniques to characterize the role of the small-XXX-small motif in function and assembly of Mam2 for the first time. We find that disruption of the motif via mutagenesis leads to reduction of Mam2 TMD1 homo-oligomerization and pheromone-responsive cellular signaling of the full-length protein. It also impairs correct targeting to the plasma membrane. Mutation of the analogous motif in Ste2 yielded similar results, suggesting a conserved mechanism for assembly. Using co-expression of the two fungal receptors in conjunction with computational models, we demonstrate a functional change in G protein specificity and propose that this is brought about through hetero-dimeric interactions of Mam2 with Ste2 via the complementary small-XXX-small motifs. This highlights the potential of these motifs to affect a range of properties that can be investigated in other GPCRs.

10.
BMC Bioinformatics ; 15: 155, 2014 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-24885854

RESUMO

BACKGROUND: The Gene Ontology project integrates data about the function of gene products across a diverse range of organisms, allowing the transfer of knowledge from model organisms to humans, and enabling computational analyses for interpretation of high-throughput experimental and clinical data. The core data structure is the annotation, an association between a gene product and a term from one of the three ontologies comprising the GO. Historically, it has not been possible to provide additional information about the context of a GO term, such as the target gene or the location of a molecular function. This has limited the specificity of knowledge that can be expressed by GO annotations. RESULTS: The GO Consortium has introduced annotation extensions that enable manually curated GO annotations to capture additional contextual details. Extensions represent effector-target relationships such as localization dependencies, substrates of protein modifiers and regulation targets of signaling pathways and transcription factors as well as spatial and temporal aspects of processes such as cell or tissue type or developmental stage. We describe the content and structure of annotation extensions, provide examples, and summarize the current usage of annotation extensions. CONCLUSIONS: The additional contextual information captured by annotation extensions improves the utility of functional annotation by representing dependencies between annotations to terms in the different ontologies of GO, external ontologies, or an organism's gene products. These enhanced annotations can also support sophisticated queries and reasoning, and will provide curated, directional links between many gene products to support pathway and network reconstruction.


Assuntos
Ontologia Genética , Anotação de Sequência Molecular , Biologia Computacional/métodos , Humanos , Proteínas/genética
11.
Bioinformatics ; 30(12): 1791-2, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24574118

RESUMO

MOTIVATION: Detailed curation of published molecular data is essential for any model organism database. Community curation enables researchers to contribute data from their papers directly to databases, supplementing the activity of professional curators and improving coverage of a growing body of literature. We have developed Canto, a web-based tool that provides an intuitive curation interface for both curators and researchers, to support community curation in the fission yeast database, PomBase. Canto supports curation using OBO ontologies, and can be easily configured for use with any species. AVAILABILITY: Canto code and documentation are available under an Open Source license from http://curation.pombase.org/. Canto is a component of the Generic Model Organism Database (GMOD) project (http://www.gmod.org/).


Assuntos
Bases de Dados Factuais , Software , Ontologias Biológicas , Internet , Schizosaccharomyces
12.
Bioinformatics ; 29(13): 1671-8, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23658422

RESUMO

MOTIVATION: To provide consistent computable descriptions of phenotype data, PomBase is developing a formal ontology of phenotypes observed in fission yeast. RESULTS: The fission yeast phenotype ontology (FYPO) is a modular ontology that uses several existing ontologies from the open biological and biomedical ontologies (OBO) collection as building blocks, including the phenotypic quality ontology PATO, the Gene Ontology and Chemical Entities of Biological Interest. Modular ontology development facilitates partially automated effective organization of detailed phenotype descriptions with complex relationships to each other and to underlying biological phenomena. As a result, FYPO supports sophisticated querying, computational analysis and comparison between different experiments and even between species. AVAILABILITY: FYPO releases are available from the Subversion repository at the PomBase SourceForge project page (https://sourceforge.net/p/pombase/code/HEAD/tree/phenotype_ontology/). The current version of FYPO is also available on the OBO Foundry Web site (http://obofoundry.org/).


Assuntos
Fenótipo , Schizosaccharomyces/genética , Ontologias Biológicas , Bases de Dados Genéticas , Ontologia Genética
13.
Nucleic Acids Res ; 40(Database issue): D695-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22039153

RESUMO

PomBase (www.pombase.org) is a new model organism database established to provide access to comprehensive, accurate, and up-to-date molecular data and biological information for the fission yeast Schizosaccharomyces pombe to effectively support both exploratory and hypothesis-driven research. PomBase encompasses annotation of genomic sequence and features, comprehensive manual literature curation and genome-wide data sets, and supports sophisticated user-defined queries. The implementation of PomBase integrates a Chado relational database that houses manually curated data with Ensembl software that supports sequence-based annotation and web access. PomBase will provide user-friendly tools to promote curation by experts within the fission yeast community. This will make a key contribution to shaping its content and ensuring its comprehensiveness and long-term relevance.


Assuntos
Bases de Dados Genéticas , Schizosaccharomyces/genética , Genoma Fúngico , Genômica , Internet , Anotação de Sequência Molecular , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA