Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Immunol ; 212(7): 1161-1171, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38372637

RESUMO

Monocytes are actively recruited to sites of infection and produce the potent proinflammatory cytokine IL-1ß. We previously showed that IL-1ß release during Toxoplasma gondii infection of primary human monocytes requires the NLRP3 inflammasome and caspase-1 but is independent of gasdermin D and pyroptosis. To investigate mechanisms of IL-1ß release, we generated caspase-1, -4, -5, or -8 knockout (KO) THP-1 monocytic cells. Genetic ablation of caspase-1 or -8, but not caspase-4 or -5, decreased IL-1ß release during T. gondii infection without affecting cell death. In contrast, TNF-α and IL-6 secretion were unperturbed in caspase-8 KO cells during T. gondii infection. Dual pharmacological inhibition of caspase-8 and RIPK1 in primary monocytes also decreased IL-1ß release without affecting cell viability or parasite infection. Caspase-8 was also required for the release of active caspase-1 from T. gondii-infected cells and for IL-1ß release during infection with the related apicomplexan parasite Neospora caninum. Surprisingly, caspase-8 deficiency did not impair synthesis or cleavage of pro-IL-1ß, but resulted in the retention of mature IL-1ß within cells. Generation of gasdermin E KO and ATG7 KO THP-1 cells revealed that the release of IL-1ß was not dependent on gasdermin E or ATG7. Collectively, our data indicate that during T. gondii Infection of human monocytes, caspase-8 functions in a novel gasdermin-independent mechanism controlling IL-1ß release from viable cells. This study expands on the molecular pathways that promote IL-1ß in human immune cells and provides evidence of a role for caspase-8 in the mechanism of IL-1ß release during infection.


Assuntos
Caspase 8 , Interleucina-1beta , Toxoplasma , Toxoplasmose , Humanos , Caspase 1/metabolismo , Caspase 8/metabolismo , Gasderminas , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Monócitos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Toxoplasmose/metabolismo
2.
PLoS Pathog ; 20(1): e1011710, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38206985

RESUMO

Toxoplasma gondii is an obligate intracellular parasite that infects one-third of the world's human population and establishes infection in the brain. Cerebral immune cell infiltration is critical for controlling the parasite, but little is known about the molecular cues guiding immune cells to the brain during infection. Activated astrocytes produce CCL2, a chemokine that mediates inflammatory monocyte recruitment to tissues by binding to the CCR2 receptor. We detected elevated CCL2 production in the brains of C57BL/6J mice by 15 days after T. gondii infection. Utilizing confocal microscopy and intracellular flow cytometry, we identified microglia and brain-infiltrating myeloid cells as the main producers of CCL2 during acute infection, and CCL2 was specifically produced in regions of parasite infection in the brain. In contrast, astrocytes became the dominant CCL2 producer during chronic T. gondii infection. To determine the role of astrocyte-derived CCL2 in mobilizing immune cells to the brain and controlling T. gondii infection, we generated GFAP-Cre x CCL2fl/fl mice, in which astrocytes are deficient in CCL2 production. We observed significantly decreased immune cell recruitment and increased parasite burden in the brain during chronic, but not acute, infection of mice deficient in astrocyte CCL2 production, without an effect on peripheral immune responses. To investigate potential mechanisms explaining the reduced control of T. gondii infection, we analyzed key antimicrobial and immune players in host defense against T. gondii and detected a reduction in iNOS+ myeloid cells, and T. gondii-specific CD4+ T cells in the knockout mice. These data uncover a critical role for astrocyte-derived CCL2 in immune cell recruitment and parasite control in the brain during chronic, but not acute, T. gondii infection.


Assuntos
Toxoplasma , Toxoplasmose , Animais , Humanos , Camundongos , Astrócitos/metabolismo , Encéfalo/metabolismo , Quimiocina CCL2/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Toxoplasma/metabolismo , Toxoplasmose/metabolismo
3.
Nat Commun ; 14(1): 6078, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770433

RESUMO

Identification of regulators of Toxoplasma gondii bradyzoite development and cyst formation is the most direct way to address the importance of parasite development in long-term persistence and reactivation of this parasite. Here we show that a T. gondii gene (named Regulator of Cystogenesis 1; ROCY1) is sufficient for T. gondii bradyzoite formation in vitro and in vivo. ROCY1 encodes an RNA binding protein that has a preference for 3' regulatory regions of hundreds of T. gondii transcripts, and its RNA-binding domains are required to mediate bradyzoite development. Female mice infected with ΔROCY1 parasites have reduced (>90%) cyst burden. While viable parasites can be cultivated from brain tissue for up to 6 months post-infection, chronic brain-resident ΔROCY1 parasites have reduced oral infectivity compared to wild type. Despite clear defects in bradyzoite formation and oral infectivity, ΔROCY1 parasites were able to reactivate with similar timing and magnitude as wild type parasites for up to 5 months post-infection. Therefore while ROCY1 is a critical regulator of the bradyzoite developmental pathway, it is not required for parasite reactivation, raising new questions about the persisting life stage responsible for causing recrudescent disease.


Assuntos
Toxoplasma , Feminino , Animais , Camundongos , Toxoplasma/metabolismo , Redes Reguladoras de Genes , Recidiva Local de Neoplasia , Encéfalo/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
4.
Trends Parasitol ; 39(10): 837-849, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37633758

RESUMO

Monocytes are recruited from the bone marrow to sites of infection where they release cytokines and chemokines, function in antimicrobial immunity, and differentiate into macrophages and dendritic cells to control infection. Although many studies have focused on monocyte-derived macrophages and dendritic cells, recent work has examined the unique roles of monocytes during infection to promote immune defense. We focus on the effector functions of monocytes during infection with the parasite Toxoplasma gondii, and discuss the signals that mobilize monocytes to sites of infection, their production of inflammatory cytokines and antimicrobial mediators, their ability to shape the adaptive immune response, and their immunoregulatory functions. Insights from other infections, including Plasmodium and Listeria are also included for comparison and context.


Assuntos
Toxoplasma , Toxoplasmose , Humanos , Monócitos , Citocinas
5.
Curr Opin Microbiol ; 72: 102264, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36791673

RESUMO

Intracellular pathogens strike a delicate balance between maintaining their survival within infected cells, while also activating host defense mechanisms. Toxoplasma gondii is a protozoan parasite that initiates a variety of host signaling pathways as it invades host cells and establishes residence in a parasitophorous vacuole. Recent work has highlighted the interplay between T. gondii infection and innate immune pathways that lead to inflammation, several of which converge on caspases. This family of cysteine proteases function at the crossroads of inflammation and cell death and serve as a key target for parasite manipulation. This review focuses on the interaction of T. gondii with caspase-dependent inflammatory and cell death pathways and the role of parasite effector proteins in modulating these processes.


Assuntos
Capparis , Toxoplasma , Humanos , Toxoplasma/fisiologia , Capparis/metabolismo , Caspases/metabolismo , Transdução de Sinais , Inflamação , Proteínas de Protozoários/metabolismo
6.
mBio ; 13(6): e0283822, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36445695

RESUMO

Despite recent advances in our understanding of pathogenic access to the central nervous system (CNS), the mechanisms by which intracellular pathogens disseminate within the dense cellular network of neural tissue remain poorly understood. To address this issue, longitudinal analysis of Toxoplasma gondii dissemination in the brain was conducted using 2-photon imaging through a cranial window in living mice that transgenically express enhanced green fluorescent protein (eGFP)-claudin-5. Extracellular T. gondii parasites were observed migrating slowly (1.37 ± 1.28 µm/min) and with low displacement within the brain. In contrast, a population of highly motile infected cells transported vacuoles of T. gondii significantly faster (6.30 ± 3.09 µm/min) and with a higher displacement than free parasites. Detailed analysis of microglial dynamics using CX3CR1-GFP mice revealed that T. gondii-infected microglia remained stationary, and infection did not increase the extension/retraction of microglial processes. The role of infiltrating immune cells in shuttling T. gondii was examined by labeling of peripheral hematopoietic cells with anti-CD45 antibody. Infected CD45+ cells were found crawling along the CNS vessel walls and trafficked T. gondii within the brain parenchyma at significantly higher speeds (3.35 ± 1.70 µm/min) than extracellular tachyzoites. Collectively, these findings highlight a dual role for immune cells in neuroprotection and in facilitating parasite dissemination within the brain. IMPORTANCE T. gondii is a foodborne parasite that infects the brain and can cause fatal encephalitis in immunocompromised individuals. However, there is a limited understanding of how the parasites disseminate through the brain and evade immune clearance. We utilized intravital imaging to visualize extracellular T. gondii tachyzoites and infected cells migrating within the infected mouse brain during acute infection. The infection of motile immune cells infiltrating the brain from the periphery significantly increased the dissemination of T. gondii in the brain compared to that of free parasites migrating using their own motility: the speed and displacement of these infected cells would enable them to cover nearly 1 cm of distance per day! Among the infiltrating cells, T. gondii predominantly infected monocytes and CD8+ T cells, indicating that the parasite can hijack immune cells that are critical for controlling the infection in order to enhance their dissemination within the brain.


Assuntos
Toxoplasma , Camundongos , Animais , Toxoplasma/fisiologia , Linfócitos T CD8-Positivos , Encéfalo/patologia , Sistema Nervoso Central , Monócitos
7.
Int J Parasitol ; 51(13-14): 1193-1212, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34736901

RESUMO

Since Nicolle, Manceaux and Splendore first described Toxoplasma gondii as a parasite of rodents and rabbits in the early 20th century, a diverse and vigorous research community has been built around studying this fascinating intracellular parasite. In addition to its importance as a pathogen of humans, livestock and wildlife, modern researchers are attracted to T. gondii as a facile experimental system to study many aspects of evolutionary biology, cellular biology, host-microbe interactions, and host immunity. For new researchers entering the field, the extensive literature describing the biology of the parasite, and the interactions with its host, can be daunting. In this review, we examine four foundational studies that describe various aspects of T. gondii biology, presenting a 'journal club'-style analysis of each. We have chosen a paper that established the beguiling life cycle of the parasite (Hutchison et al., 1971), a paper that described key features of its cellular biology that the parasite shares with related organisms (Gustafson et al., 1954), a paper that characterised the origin of the unique compartment in which the parasite resides within host cells (Jones and Hirsch, 1972), and a paper that established a key mechanism in the host immune response to parasite infection (Pfefferkorn, 1984). These interesting and far-reaching studies set the stage for subsequent research into numerous facets of parasite biology. As well as providing new researchers with an entry point into the literature surrounding the parasite, revisiting these studies can remind us of the roots of our discipline, how far we have come, and the new directions in which we might head.


Assuntos
Besouros , Toxoplasma , Animais , Estágios do Ciclo de Vida , Coelhos
8.
mBio ; 12(1)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33500339

RESUMO

Toxoplasma gondii is an intracellular protozoan parasite that has the remarkable ability to infect and replicate in neutrophils, immune cells with an arsenal of antimicrobial effector mechanisms. We report that T. gondii infection extends the life span of primary human peripheral blood neutrophils by delaying spontaneous apoptosis, serum starvation-induced apoptosis, and tumor necrosis alpha (TNF-α)-mediated apoptosis. T. gondii blockade of apoptosis was associated with an inhibition of processing and activation of the apoptotic caspases caspase-8 and -3, decreased phosphatidylserine exposure on the plasma membrane, and reduced cell death. We performed a global transcriptome analysis of T. gondii-infected peripheral blood neutrophils using RNA sequencing (RNA-Seq) and identified gene expression changes associated with DNA replication and DNA repair pathways, which in mature neutrophils are indicative of changes in regulators of cell survival. Consistent with the RNA-Seq data, T. gondii infection upregulated transcript and protein expression of PCNA, which is found in the cytosol of human neutrophils, where it functions as a key inhibitor of apoptotic pro-caspases. Infection of neutrophils resulted in increased interaction of PCNA with pro-caspase-3. Inhibition of this interaction with an AlkB homologue 2 PCNA-interacting motif (APIM) peptide reversed the infection-induced delay in cell death. Taken together, these findings indicate a novel strategy by which T. gondii manipulates cell life span in primary human neutrophils, which may allow the parasite to maintain an intracellular replicative niche and avoid immune clearance.IMPORTANCEToxoplasma gondii is an obligate intracellular parasite that can cause life-threatening disease in immunocompromised individuals and in the developing fetus. Interestingly, T. gondii has evolved strategies to successfully manipulate the host immune system to establish a productive infection and evade host defense mechanisms. Although it is well documented that neutrophils are mobilized during acute T. gondii infection and infiltrate the site of infection, these cells can also be actively infected by T. gondii and serve as a replicative niche for the parasite. However, there is a limited understanding of the molecular processes occurring within T. gondii-infected neutrophils. This study reveals that T. gondii extends the life span of human neutrophils by inducing the expression of PCNA, which prevents activation of apoptotic caspases, thus delaying apoptosis. This strategy may allow the parasite to preserve its replicative intracellular niche.


Assuntos
Apoptose/imunologia , Caspase 8/metabolismo , Caspases/metabolismo , Citosol/metabolismo , Neutrófilos/parasitologia , Antígeno Nuclear de Célula em Proliferação/genética , Toxoplasma/imunologia , Caspase 3/genética , Caspase 3/metabolismo , Caspase 8/genética , Caspases/genética , Sobrevivência Celular/imunologia , Células Cultivadas , Citosol/enzimologia , Citosol/parasitologia , Perfilação da Expressão Gênica , Humanos , Neutrófilos/enzimologia , Neutrófilos/fisiologia , Análise de Sequência de RNA , Regulação para Cima
9.
J Neurosci Methods ; 350: 109044, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33340556

RESUMO

BACKGROUND: The regulation of cerebral blood flow is critical for normal brain functioning, and many physiological and pathological conditions can have long-term impacts on cerebral blood flow. However, minimally invasive tools to study chronic changes in animal models are limited. NEW METHOD: We developed a minimally invasive surgical technique (cyanoacrylate skull, CAS) allowing us to image cerebral blood flow longitudinally through the intact mouse skull using laser speckle imaging. RESULTS: With CAS we were able to detect acute changes in cerebral blood flow induced by hypercapnic challenge. We were also able to image cerebral blood flow dynamics with laser speckle imaging for over 100 days. Furthermore, the relative cerebral blood flow remained stable in mice from 30 days to greater than 100 days after the surgery. COMPARISON WITH EXISTING METHODS: Previously, achieving continuous long-term optical access to measure cerebral blood flow in individual vessels in a mouse model involved invasive surgery. In contrast, the CAS technique presented here is relatively non-invasive, as it allows stable optical access through an intact mouse skull. CONCLUSIONS: The CAS technique allows researcher to chronically measure cerebral blood flow dynamics for a significant portion of a mouse's lifespan. This approach may be useful for studying changes in blood flow due to cerebral pathology or for examining the therapeutic effects of modifying cerebral blood flow in mouse models relevant to human disease.


Assuntos
Circulação Cerebrovascular , Imagem Óptica , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/cirurgia , Hemodinâmica , Camundongos , Crânio/diagnóstico por imagem , Crânio/cirurgia
10.
Sci Adv ; 6(49)2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33277245

RESUMO

Macrophages are innate immune cells that adhere to the extracellular matrix within tissues. However, how matrix properties regulate their function remains poorly understood. Here, we report that the adhesive microenvironment tunes the macrophage inflammatory response through the transcriptional coactivator YAP. We find that adhesion to soft hydrogels reduces inflammation when compared to adhesion on stiff materials and is associated with reduced YAP expression and nuclear localization. Substrate stiffness and cytoskeletal polymerization, but not adhesive confinement nor contractility, regulate YAP localization. Furthermore, depletion of YAP inhibits macrophage inflammation, whereas overexpression of active YAP increases inflammation. Last, we show in vivo that soft materials reduce expression of inflammatory markers and YAP in surrounding macrophages when compared to stiff materials. Together, our studies identify YAP as a key molecule for controlling inflammation and sensing stiffness in macrophages and may have broad implications in the regulation of macrophages in health and disease.


Assuntos
Mecanotransdução Celular , Proteínas de Sinalização YAP , Matriz Extracelular/metabolismo , Humanos , Inflamação/metabolismo , Macrófagos , Mecanotransdução Celular/fisiologia
11.
mSphere ; 5(1)2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31996420

RESUMO

Toxoplasma gondii can infect and replicate in vascular endothelial cells prior to entering host tissues. However, little is known about the molecular interactions at the parasite-endothelial cell interface. We demonstrate that T. gondii infection of primary human umbilical vein endothelial cells (HUVEC) altered cell morphology and dysregulated barrier function, increasing permeability to low-molecular-weight polymers. T. gondii disrupted vascular endothelial cadherin (VE-cadherin) and ß-catenin localization to the cell periphery and reduced VE-cadherin protein expression. Notably, T. gondii infection led to reorganization of the host cytoskeleton by reducing filamentous actin (F-actin) stress fiber abundance under static and microfluidic shear stress conditions and by reducing planar cell polarity. RNA sequencing (RNA-Seq) comparing genome-wide transcriptional profiles of infected to uninfected endothelial cells revealed changes in gene expression associated with cell-cell adhesion, extracellular matrix reorganization, and cytokine-mediated signaling. In particular, genes downstream of Hippo signaling and the biomechanical sensor and transcriptional coactivator Yes-associated protein (YAP) were downregulated in infected endothelial cells. Interestingly, T. gondii infection activated Hippo signaling by increasing phosphorylation of LATS1, leading to cytoplasmic retention of YAP, and reducing YAP target gene expression. These findings suggest that T. gondii infection triggers Hippo signaling and YAP nuclear export, leading to an altered transcriptional profile of infected endothelial cells.IMPORTANCE Toxoplasma gondii is a foodborne parasite that infects virtually all warm-blooded animals and can cause severe disease in individuals with compromised or weakened immune systems. During dissemination in its infected hosts, T. gondii breaches endothelial barriers to enter tissues and establish the chronic infections underlying the most severe manifestations of toxoplasmosis. The research presented here examines how T. gondii infection of primary human endothelial cells induces changes in cell morphology, barrier function, gene expression, and mechanotransduction signaling under static conditions and under the physiological conditions of shear stress found in the bloodstream. Understanding the molecular interactions occurring at the interface between endothelial cells and T. gondii may provide insights into processes linked to parasite dissemination and pathogenesis.


Assuntos
Permeabilidade da Membrana Celular , Células Endoteliais da Veia Umbilical Humana/parasitologia , Mecanotransdução Celular , Toxoplasma/patogenicidade , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antígenos CD/metabolismo , Caderinas/metabolismo , Polaridade Celular , Células Cultivadas , Citoesqueleto , Via de Sinalização Hippo , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , RNA-Seq , Fibras de Estresse/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma , Proteínas de Sinalização YAP , beta Catenina/metabolismo
12.
Methods Mol Biol ; 2071: 143-155, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31758451

RESUMO

Rhoptries are key secretory organelles for Toxoplasma gondii invasion. Here, we describe how to assess the ability of T. gondii tachyzoites to secrete their rhoptry contents in vitro.


Assuntos
Organelas/metabolismo , Toxoplasma/metabolismo , Toxoplasma/patogenicidade , Linhagem Celular , Fibroblastos/parasitologia , Humanos , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
13.
Proc Natl Acad Sci U S A ; 116(49): 24796-24807, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31727842

RESUMO

Brain infection by the parasite Toxoplasma gondii in mice is thought to generate vulnerability to predation by mechanisms that remain elusive. Monocytes play a key role in host defense and inflammation and are critical for controlling T. gondii However, the dynamic and regional relationship between brain-infiltrating monocytes and parasites is unknown. We report the mobilization of inflammatory (CCR2+Ly6Chi) and patrolling (CX3CR1+Ly6Clo) monocytes into the blood and brain during T. gondii infection of C57BL/6J and CCR2RFP/+CX3CR1GFP/+ mice. Longitudinal analysis of mice using 2-photon intravital imaging of the brain through cranial windows revealed that CCR2-RFP monocytes were recruited to the blood-brain barrier (BBB) within 2 wk of T. gondii infection, exhibited distinct rolling and crawling behavior, and accumulated within the vessel lumen before entering the parenchyma. Optical clearing of intact T. gondii-infected brains using iDISCO+ and light-sheet microscopy enabled global 3D detection of monocytes. Clusters of T. gondii and individual monocytes across the brain were identified using an automated cell segmentation pipeline, and monocytes were found to be significantly correlated with sites of T. gondii clusters. Computational alignment of brains to the Allen annotated reference atlas [E. S. Lein et al., Nature 445:168-176 (2007)] indicated a consistent pattern of monocyte infiltration during T. gondii infection to the olfactory tubercle, in contrast to LPS treatment of mice, which resulted in a diffuse distribution of monocytes across multiple brain regions. These data provide insights into the dynamics of monocyte recruitment to the BBB and the highly regionalized localization of monocytes in the brain during T. gondii CNS infection.


Assuntos
Barreira Hematoencefálica/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Monócitos/metabolismo , Toxoplasmose/diagnóstico por imagem , Toxoplasmose/metabolismo , Animais , Antígenos Ly/metabolismo , Barreira Hematoencefálica/diagnóstico por imagem , Receptor 1 de Quimiocina CX3C/metabolismo , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores CCR2/metabolismo
14.
PLoS Pathog ; 15(8): e1007923, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31449558

RESUMO

IL-1ß is a potent pro-inflammatory cytokine that promotes immunity and host defense, and its dysregulation is associated with immune pathology. Toxoplasma gondii infection of myeloid cells triggers the production and release of IL-1ß; however, the mechanisms regulating this pathway, particularly in human immune cells, are incompletely understood. We have identified a novel pathway of T. gondii induction of IL-1ß via a Syk-CARD9-NF-κB signaling axis in primary human peripheral blood monocytes. Syk was rapidly phosphorylated during T. gondii infection of primary monocytes, and inhibiting Syk with the pharmacological inhibitors R406 or entospletinib, or genetic ablation of Syk in THP-1 cells, reduced IL-1ß release. Inhibition of Syk in primary cells or deletion of Syk in THP-1 cells decreased parasite-induced IL-1ß transcripts and the production of pro-IL-1ß. Furthermore, inhibition of PKCδ, CARD9/MALT-1 and IKK reduced p65 phosphorylation and pro-IL-1ß production in T. gondii-infected primary monocytes, and genetic knockout of PKCδ or CARD9 in THP-1 cells also reduced pro-IL-1ß protein levels and IL-1ß release during T. gondii infection, indicating that Syk functions upstream of this NF-κB-dependent signaling pathway for IL-1ß transcriptional activation. IL-1ß release from T. gondii-infected primary human monocytes required the NLRP3-caspase-1 inflammasome, but interestingly, was independent of gasdermin D (GSDMD) cleavage and pyroptosis. Moreover, GSDMD knockout THP-1 cells released comparable amounts of IL-1ß to wild-type THP-1 cells after T. gondii infection. Taken together, our data indicate that T. gondii induces a Syk-CARD9/MALT-1-NF-κB signaling pathway and activation of the NLRP3 inflammasome for the release of IL-1ß in a cell death- and GSDMD-independent manner. This research expands our understanding of the molecular basis for human innate immune regulation of inflammation and host defense during parasite infection.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/metabolismo , Interleucina-1beta/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Monócitos/metabolismo , NF-kappa B/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Quinase Syk/metabolismo , Toxoplasmose/metabolismo , Proteínas Adaptadoras de Sinalização CARD/genética , Células Cultivadas , Humanos , Inflamassomos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Monócitos/imunologia , Monócitos/microbiologia , NF-kappa B/genética , Proteínas de Ligação a Fosfato/genética , Transdução de Sinais , Quinase Syk/genética , Toxoplasma/fisiologia , Toxoplasmose/imunologia , Toxoplasmose/microbiologia
15.
Artigo em Inglês | MEDLINE | ID: mdl-31041194

RESUMO

Toxoplasma gondii is an intracellular protozoan parasite of global importance that can remarkably infect, survive, and replicate in nearly all mammalian cells. Notably, 110 years after its discovery, Toxoplasmosis is still a neglected parasitic infection. Although most human infections with T. gondii are mild or asymptomatic, T. gondii infection can result in life-threatening disease in immunocompromised individuals and in the developing fetus due to congenital infection, underscoring the role of the host immune system in controlling the parasite. Recent evidence indicates that T. gondii elicits a robust innate immune response during infection. Interestingly, however, T. gondii has evolved strategies to successfully bypass or manipulate the immune system and establish a life-long infection in infected hosts. In particular, T. gondii manipulates host immunity through the control of host gene transcription and dysregulation of signaling pathways that result in modulation of cell adhesion and migration, secretion of immunoregulatory cytokines, production of microbicidal molecules, and apoptosis. Many of these host-pathogen interactions are governed by parasite effector proteins secreted from the apical secretory organelles, including the rhoptries and dense granules. Here, we review recent findings on mechanisms by which T. gondii evades host innate immunity, with a focus on parasite evasion of the human innate immune system.


Assuntos
Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , Imunidade Inata , Toxoplasma/crescimento & desenvolvimento , Toxoplasma/imunologia , Toxoplasmose/parasitologia , Humanos
16.
Glia ; 67(5): 844-856, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30588668

RESUMO

Alzheimer's disease (AD) is the leading cause of age-related neurodegeneration and is characterized neuropathologically by the accumulation of insoluble beta-amyloid (Aß) peptides. In AD brains, plaque-associated myeloid (PAM) cells cluster around Aß plaques but fail to effectively clear Aß by phagocytosis. PAM cells were originally thought to be brain-resident microglia. However, several studies have also suggested that Aß-induced inflammation causes peripheral monocytes to enter the otherwise immune-privileged brain. The relationship between AD progression and inflammation in the brain remains ambiguous because microglia and monocyte-derived macrophages are extremely difficult to distinguish from one another in an inflamed brain. Whether PAM cells are microglia, peripheral macrophages, or a mixture of both remains unclear. CD11a is a component of the ß2 integrin LFA1. We have determined that CD11a is highly expressed on peripheral immune cells, including macrophages, but is not expressed by mouse microglia. These expression patterns remain consistent in LPS-treated inflamed mice, as well as in two mouse models of AD. Thus, CD11a can be used as a marker to distinguish murine microglia from infiltrating peripheral immune cells. Using CD11a, we show that PAM cells in AD transgenic brains are comprised entirely of microglia. We also demonstrate a novel fluorescence-assisted quantification technique (FAQT), which reveals a significant increase in T lymphocytes, especially in the brains of female AD mice. Our findings support the notion that microglia are the lead myeloid players in AD and that rejuvenating their phagocytic potential may be an important therapeutic strategy.


Assuntos
Doença de Alzheimer/patologia , Antígeno CD11a/metabolismo , Microglia/metabolismo , Microglia/patologia , Células Mieloides/metabolismo , Algoritmos , Doença de Alzheimer/genética , Doença de Alzheimer/cirurgia , Animais , Animais Recém-Nascidos , Transplante de Medula Óssea , Encéfalo/metabolismo , Encéfalo/patologia , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Inflamação/etiologia , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Células Mieloides/efeitos dos fármacos , Oxirredutases/genética , Oxirredutases/metabolismo , Receptores CCR2/genética , Receptores CCR2/metabolismo , Toxoplasmose/complicações
18.
mBio ; 9(5)2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30279285

RESUMO

Invasion of host cells by apicomplexan parasites such as Toxoplasma gondii is critical for their infectivity and pathogenesis. In Toxoplasma, secretion of essential egress, motility, and invasion-related proteins from microneme organelles is regulated by oscillations of intracellular Ca2+ Later stages of invasion are considered Ca2+ independent, including the secretion of proteins required for host cell entry and remodeling from the parasite's rhoptries. We identified a family of three Toxoplasma proteins with homology to the ferlin family of double C2 domain-containing Ca2+ sensors. In humans and model organisms, such Ca2+ sensors orchestrate Ca2+-dependent exocytic membrane fusion with the plasma membrane. Here we focus on one ferlin that is conserved across the Apicomplexa, T. gondii FER2 (TgFER2). Unexpectedly, conditionally TgFER2-depleted parasites secreted their micronemes normally and were completely motile. However, these parasites were unable to invade host cells and were therefore not viable. Knockdown of TgFER2 prevented rhoptry secretion, and these parasites failed to form the moving junction at the parasite-host interface necessary for host cell invasion. Collectively, these data demonstrate the requirement of TgFER2 for rhoptry secretion in Toxoplasma tachyzoites and suggest a possible Ca2+ dependence of rhoptry secretion. These findings provide the first mechanistic insights into this critical yet poorly understood aspect of apicomplexan host cell invasion.IMPORTANCE Apicomplexan protozoan parasites, such as those causing malaria and toxoplasmosis, must invade the cells of their hosts in order to establish a pathogenic infection. Timely release of proteins from a series of apical organelles is required for invasion. Neither the vesicular fusion events that underlie secretion nor the observed reliance of the various processes on changes in intracellular calcium concentrations is completely understood. We identified a group of three proteins with strong homology to the calcium-sensing ferlin family, which are known to be involved in protein secretion in other organisms. Surprisingly, decreasing the amounts of one of these proteins (TgFER2) did not have any effect on the typically calcium-dependent steps in invasion. Instead, TgFER2 was essential for the release of proteins from organelles called rhoptries. These data provide a tantalizing first look at the mechanisms controlling the very poorly understood process of rhoptry secretion, which is essential for the parasite's infection cycle.


Assuntos
Cálcio/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/enzimologia , Linhagem Celular , Técnicas de Silenciamento de Genes , Genoma de Protozoário , Interações Hospedeiro-Parasita , Humanos , Proteínas de Protozoários/genética , Toxoplasma/genética
19.
ACS Cent Sci ; 4(8): 982-995, 2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-30159395

RESUMO

The NLRP3 inflammasome plays a role in the inflammatory response to vaccines, in antimicrobial host defense, and in autoimmune diseases. However, its mechanism of action remains incompletely understood. NLRP3 has been shown to be activated by diverse stimuli including microbial toxins, ATP, particulate matter, etc. that activate multiple cellular processes. There have been two major challenges in translating inflammasome activators into controlled adjuvants. Both stem from their chemical and structural diversity. First, it is difficult to identify a minimum requirement for inflammasome activation. Second, no current activator can be tuned to generate a desired degree of activation. Thus, in order to design such immunomodulatory biomaterials, we developed a new tunable lysosomal rupture probe that leads to significant differences in inflammasome activation owing to structural changes as small as a single amino acid. Using these probes, we conduct experiments that suggest that rupturing lysosomes is a critical, initial step necessary to activate an inflammasome and that it precedes other pathways of activation. We demonstrate that each molecule differentially activates the inflammasome based solely on their degree of lysosomal rupture. We have employed this understanding of chemical control in structure-based design of immunomodulatory NLRP3 agonists on a semipredictive basis. This information may guide therapeutic interventions to prevent or mitigate lysosomal rupture and will also provide a predictive framework for dosable activation of the NLRP3 inflammasome for potential applications in vaccines and immunotherapies.

20.
mBio ; 9(1)2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29440572

RESUMO

Neutrophils are a major player in host immunity to infection; however, the mechanisms by which human neutrophils respond to the intracellular protozoan parasite Toxoplasma gondii are still poorly understood. In the current study, we found that, whereas primary human monocytes produced interleukin-1beta (IL-1ß) in response to T. gondii infection, human neutrophils from the same blood donors did not. Moreover, T. gondii inhibited lipopolysaccharide (LPS)-induced IL-1ß synthesis in human peripheral blood neutrophils. IL-1ß suppression required active parasite invasion, since heat-killed or mycalolide B-treated parasites did not inhibit IL-1ß release. By investigating the mechanisms involved in this process, we found that T. gondii infection of neutrophils treated with LPS resulted in reduced transcript levels of IL-1ß and NLRP3 and reduced protein levels of pro-IL-1ß, mature IL-1ß, and the inflammasome sensor NLRP3. In T. gondii-infected neutrophils stimulated with LPS, the levels of MyD88, TRAF6, IKKα, IKKß, and phosphorylated IKKα/ß were not affected. However, LPS-induced IκBα degradation and p65 phosphorylation were reduced in T. gondii-infected neutrophils, and degradation of IκBα was reversed by treatment with the proteasome inhibitor MG-132. Finally, we observed that T. gondii inhibited the cleavage and activity of caspase-1 in human neutrophils. These results indicate that T. gondii suppression of IL-1ß involves a two-pronged strategy whereby T. gondii inhibits both NF-κB signaling and activation of the NLRP3 inflammasome. These findings represent a novel mechanism of T. gondii evasion of human neutrophil-mediated host defense by targeting the production of IL-1ß.IMPORTANCEToxoplasma gondii is an obligate intracellular parasite that infects approximately one-third of humans worldwide and can invade virtually any nucleated cell in the human body. Although it is well documented that neutrophils infiltrate the site of acute T. gondii infection, there is limited understanding of how human neutrophils respond to T. gondii Neutrophils control infectious pathogens by a variety of mechanisms, including the release of the cytokine IL-1ß, a major driver of inflammation during infection. This study reveals that T. gondii is able to inhibit IL-1ß production in human neutrophils by impairing the activation of the NF-κB signaling pathway and by inhibiting the inflammasome, the protein complex responsible for IL-1ß maturation. This two-pronged strategy of targeting the IL-1ß pathway may facilitate the survival and spread of T. gondii during acute infection.


Assuntos
Evasão da Resposta Imune , Neutrófilos/imunologia , Toxoplasma/imunologia , Toxoplasmose/imunologia , Células Cultivadas , Voluntários Saudáveis , Humanos , Fatores Imunológicos/metabolismo , Interleucina-1beta/metabolismo , Monócitos/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA