Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Evol ; 9(19): 11010-11024, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31641451

RESUMO

Determining parameters that govern pathogen transmission (such as the force of infection, FOI), and pathogen impacts on morbidity and mortality, is exceptionally challenging for wildlife. Vital parameters can vary, for example across host populations, between sexes and within an individual's lifetime.Feline immunodeficiency virus (FIV) is a lentivirus affecting domestic and wild cat species, forming species-specific viral-host associations. FIV infection is common in populations of puma (Puma concolor), yet uncertainty remains over transmission parameters and the significance of FIV infection for puma mortality. In this study, the age-specific FOI of FIV in pumas was estimated from prevalence data, and the evidence for disease-associated mortality was assessed.We fitted candidate models to FIV prevalence data and adopted a maximum likelihood method to estimate parameter values in each model. The models with the best fit were determined to infer the most likely FOI curves. We applied this strategy for female and male pumas from California, Colorado, and Florida.When splitting the data by sex and area, our FOI modeling revealed no evidence of disease-associated mortality in any population. Both sex and location were found to influence the FOI, which was generally higher for male pumas than for females. For female pumas at all sites, and male pumas from California and Colorado, the FOI did not vary with puma age, implying FIV transmission can happen throughout life; this result supports the idea that transmission can occur from mothers to cubs and also throughout adult life. For Florida males, the FOI was a decreasing function of puma age, indicating an increased risk of infection in the early years, and a decreased risk at older ages.This research provides critical insight into pathogen transmission and impact in a secretive and solitary carnivore. Our findings shed light on the debate on whether FIV causes mortality in wild felids like puma, and our approach may be adopted for other diseases and species. The methodology we present can be used for identifying likely transmission routes of a pathogen and also estimating any disease-associated mortality, both of which can be difficult to establish for wildlife diseases in particular.

2.
J Virol ; 88(14): 7727-37, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24741092

RESUMO

Mountain lions (Puma concolor) throughout North and South America are infected with puma lentivirus clade B (PLVB). A second, highly divergent lentiviral clade, PLVA, infects mountain lions in southern California and Florida. Bobcats (Lynx rufus) in these two geographic regions are also infected with PLVA, and to date, this is the only strain of lentivirus identified in bobcats. We sequenced full-length PLV genomes in order to characterize the molecular evolution of PLV in bobcats and mountain lions. Low sequence homology (88% average pairwise identity) and frequent recombination (1 recombination breakpoint per 3 isolates analyzed) were observed in both clades. Viral proteins have markedly different patterns of evolution; sequence homology and negative selection were highest in Gag and Pol and lowest in Vif and Env. A total of 1.7% of sites across the PLV genome evolve under positive selection, indicating that host-imposed selection pressure is an important force shaping PLV evolution. PLVA strains are highly spatially structured, reflecting the population dynamics of their primary host, the bobcat. In contrast, the phylogeography of PLVB reflects the highly mobile mountain lion, with diverse PLVB isolates cocirculating in some areas and genetically related viruses being present in populations separated by thousands of kilometers. We conclude that PLVA and PLVB are two different viral species with distinct feline hosts and evolutionary histories. Importance: An understanding of viral evolution in natural host populations is a fundamental goal of virology, molecular biology, and disease ecology. Here we provide a detailed analysis of puma lentivirus (PLV) evolution in two natural carnivore hosts, the bobcat and mountain lion. Our results illustrate that PLV evolution is a dynamic process that results from high rates of viral mutation/recombination and host-imposed selection pressure.


Assuntos
Genoma Viral , Vírus da Imunodeficiência Felina/isolamento & purificação , Lynx/virologia , Puma/virologia , RNA Viral/genética , Análise de Sequência de DNA , Animais , Análise por Conglomerados , Evolução Molecular , Variação Genética , Vírus da Imunodeficiência Felina/classificação , Vírus da Imunodeficiência Felina/genética , Dados de Sequência Molecular , América do Norte , Filogeografia , Recombinação Genética , Seleção Genética , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA