Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 27(22)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36431952

RESUMO

Green synthesis of silver nanoparticles (AgNPs) has gained greater interest among chemists and researchers in this current scenario. The present research investigates the larvicidal and anti-proliferation activity of AgNPs derived from Knoxia sumatrensis aqueous leaf extract (K. sumatrensis-ALE) as a potential capping and reducing candidate. The synthesized AgNPs were characterized through-UV-spectra absorption peak at 425 nm. The XRD and FT-IR studied displayed the crystalline nature and presence of functional groups in prepared samples. FE-SEM showed the hexagonal shape of NPs with the size of 7.73 to 32.84 nm. The synthesized AgNPs displayed superior antioxidant and anti-proliferative activity (IC50 53.29 µg/mL) of breast cancer cell line (MCF-7). Additionally, larvicidal activity against mosquito vector Culex quinquefasciatus larvae delivered (LC50-0.40, mg/L, and LC90-15.83) significant mortality rate post treatment with synthesized AgNPs. Overall, the present research illustrates that the synthesized AgNPs have high biological potential and present a perfect contender in the pharmacological and mosquitocidal arena.


Assuntos
Inseticidas , Nanopartículas Metálicas , Rubiaceae , Animais , Prata/química , Nanopartículas Metálicas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Inseticidas/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Rubiaceae/metabolismo
2.
Toxicol Rep ; 8: 64-72, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33391999

RESUMO

In around the world, mosquito control is considered a most important because of the incapable of synthetic insecticides and the ecological pollution about by them. In this manner, need the eco-friendly insecticides to efficient control the mosquito disease is the need of the hour. We synthesized the eco-friendly of zinc oxide nanoparticles (ZnO-NPs) using the Knoxia sumatrensis aqueous leaf extract (Ks-ALE) as a reducing and stabilizing agent. The synthesis of ZnO-NPs was confirmed by UV with an absorption peak at 354 nm. ZnO-NPs crystal structure was analyzed by X-ray diffraction (XRD). Fourier transform infrared spectroscopy (FT-IR) spectra revealed the chloride, cyclic alcohols, sulfonamies, carboxylic acids, oximes, phosphines, alkenes and alcohol & phenol. Field emission-scanning electron microscopy (FE-SEM) showed that the NP's are rod shaped with 50-80 nm size and also energy dispersive spectra (EDaX) spectra showed presence of zinc. Antioxidant assay showed superior activity and evidenced by DPPH, ABTS and H2O2 radical assays. Furthermore, the ZnO-NPs exhibited strong activity in MCF-7 cell line with IC50 value is 58.87 µg/mL. Mosquito larvicidal activity of ZnO-NPs produced significant activity and excellent larvicidal activity was noticed in Cx. quinquefasciatus with LC50 0.08, mg/mL and LC9019.46 mg/mL. This study suggests that synthesized ZnO-NPs using Knoxia sumatrensis leaf extract have good biological activities and it makes them an ideal candidate for pharmacological studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA