Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 30(5): e202303350, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-37872737

RESUMO

Three series of palladium(II) complexes supported by a phosphine-iminophosphorane ligand built upon an ortho-phenylene core were investigated to study the influence of the iminophosphorane N substituent. Cis-dichloride palladium(II) complexes 1 in which the N atom bears an isopropyl (iPr, 1 a), a phenyl (Ph, 1 b), a trimethylsilyl (TMS, 1 c) group or an H atom (1 d) were synthesized in high yield. They were characterized by NMR, IR spectroscopy, HR-mass spectrometry, elemental analysis, and X-ray diffraction. A substantial bond length difference between the Pd-Cl bonds was observed in 1. Complexes 1 a-d were converted into [Pd(LR )Cl(CNt Bu)](OTf)] 2 a-d whose isocyanide is located trans to the iminophosphorane. The corresponding dicationic complexes [Pd(LR )(CNt Bu)2 ](OTf)2 3 a-d were also synthesized, however they exhibited lower stability in solution than 2, the isopropyl derivative 3 a being the most stable of the series. Molecular modeling was performed to rationalize the regioselectivity of the substitution of the single chloride by isocyanide (from 1 to 2) and to study the electronic distribution in the complexes. In particular differences between the TMS and H containing complexes vs. the iPr and Ph ones were found. This suggests that the nature of the N substituent is far from innocent and can help tune the reactivity of iminophosphorane complexes.

2.
J Phys Chem A ; 127(13): 2921-2935, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36975163

RESUMO

The complex photoisomerization mechanism of the dihydropyrene (DHP) photochromic system is revisited using spin-flip time-dependent density functional theory (SF-TD-DFT). The photoinduced ring-opening reaction of DHP into its cyclophanediene isomer involves multiple coupled electronic states of different character. A balanced treatment of both static and dynamic electron correlations is required to determine both the photophysical and photochemical paths in this system. The present results provide a refinement of the mechanistic picture provided in a previous complete active space self-consistent field plus second-order perturbation theory (CASPT2//CASSCF) study based on geometry optimizations at the CASSCF level. In particular, the nature of the conical intersection playing the central role of the photochemical funnel is different. While at the CASSCF level, the crossing with the ground state involves a covalent doubly excited state leading to a three-electron/three-center bond conical intersection, SF-TD-DFT predicts a crossing between the ground state and a zwitterionic state. These results are supported by multi-state CASPT2 calculations. This study illustrates the importance of optimizing conical intersections at a sufficiently correlated level of theory to describe a photochemical path involving crossings between covalent and ionic states.

3.
JACS Au ; 3(1): 131-142, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36711101

RESUMO

Molecular systems and devices whose properties can be modulated using light as an external stimulus are the subject of numerous research studies in the fields of materials and life sciences. In this context, the use of photochromic compounds that reversibly switch upon light irradiation is particularly attractive. However, for many envisioned applications, and in particular for biological purposes, illumination with harmful UV light must be avoided and these photoactivable systems must operate in aqueous media. In this context, we have designed a benzo[e]-fused dimethyldihydropyrene compound bearing a methyl-pyridinium electroacceptor group that meets these requirements. This compound (closed state) is able to reversibly isomerize under aerobic conditions into its corresponding cyclophanediene form (open isomer) through the opening of its central carbon-carbon bond. Both the photo-opening and the reverse photoclosing processes are triggered by visible light illumination and proceed with high quantum yields (respectively 14.5% yield at λ = 680 nm and quantitative quantum yield at λ = 470 nm, in water). This system has been investigated by nuclear magnetic resonance and absorption spectroscopy, and the efficient photoswitching behavior was rationalized by spin-flip time-dependent density functional theory calculations. In addition, it is demonstrated that the isomerization from the open to the closed form can be electrocatalytically triggered.

4.
Chemistry ; 27(67): 16642-16653, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34677893

RESUMO

A dimethyldihydropyrene (DHP) photochromic unit has been functionalized by donor (triphenylamine group) and acceptor (methylpyridinium) substituents. This compound was characterized by NMR, absorption and emission spectroscopies as well as cyclic voltammetry, and its properties were rationalized by theoretical calculations. The incorporation of both electron-donor and -withdrawing groups at the photochromic center allows i) an efficient photo-isomerization of the system when illuminated at low energy (quantum yield: Φc-o =13.3 % at λex =660 nm), ii) the reversible and quantitative formation of two endoperoxyde isomers when illuminated under aerobic conditions at room temperature, and iii) the storage and production of singlet oxygen. The photo-isomerization mechanism was also investigated by spin-flip TD-DFT (SF-TD-DFT) calculations.

5.
Chemphyschem ; 21(14): 1571-1577, 2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32400097

RESUMO

Photochromic dimethyldihydropyrenes substituted with electron-withdrawing pyridinium groups have shown an increase of photo-induced ring-opening efficiency and a light sensitivity that is red shifted relative to the unsubstituted compound. However, a recently synthesized tetrapyridinium derivative showed a considerable decrease of the photo-isomerization quantum yield relative to the monopyridinium and bispyridinium derivatives. We provide a rationale for this unexpected photochemical behavior based on the comparative theoretical investigations of the relevant excited states of these systems. In particular, we found that the nature and order of the lowest two excited states depend on the number of pyridinium groups and on the symmetry of the system. While the lowest S1 excited state is photo-active in the monopyridinium and bispyridinium derivatives, the photo-isomerizing state is S2 in the reference unsubstituted compound and both S1 and S2 lead to isomerization in the tetrapyridinium derivative, albeit with a low efficiency. In the latter derivative, the photo-isomerization is hindered by the particular S1 /S2 conical intersection topology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA