Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Adv ; 10(26): eadk7615, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38941463

RESUMO

Seismic observations of impacts on Mars indicate a higher impact flux than previously measured. Using six confirmed seismic impact detections near the NASA InSight lander and two distant large impacts, we calculate appropriate scalings to compare these rates with lunar-based chronology models. We also update the impact rate from orbital observations using the most recent catalog of new craters on Mars. The snapshot of the current impact rate at Mars recorded seismically is higher than that found using orbital detections alone. The measured rates differ between a factor of 2 and 10, depending on the diameter, although the sample size of seismically detected impacts is small. The close timing of the two largest new impacts found on Mars in the past few decades indicates either a heightened impact rate or a low-probability temporal coincidence, perhaps representing recent fragmentation of a parent body. We conclude that seismic methods of detecting current impacts offer a more complete dataset than orbital imaging.

3.
Nature ; 622(7984): 712-717, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37880437

RESUMO

The detection of deep reflected S waves on Mars inferred a core size of 1,830 ± 40 km (ref. 1), requiring light-element contents that are incompatible with experimental petrological constraints. This estimate assumes a compositionally homogeneous Martian mantle, at odds with recent measurements of anomalously slow propagating P waves diffracted along the core-mantle boundary2. An alternative hypothesis is that Mars's mantle is heterogeneous as a consequence of an early magma ocean that solidified to form a basal layer enriched in iron and heat-producing elements. Such enrichment results in the formation of a molten silicate layer above the core, overlain by a partially molten layer3. Here we show that this structure is compatible with all geophysical data, notably (1) deep reflected and diffracted mantle seismic phases, (2) weak shear attenuation at seismic frequency and (3) Mars's dissipative nature at Phobos tides. The core size in this scenario is 1,650 ± 20 km, implying a density of 6.5 g cm-3, 5-8% larger than previous seismic estimates, and can be explained by fewer, and less abundant, alloying light elements than previously required, in amounts compatible with experimental and cosmochemical constraints. Finally, the layered mantle structure requires external sources to generate the magnetic signatures recorded in Mars's crust.

4.
Nature ; 619(7971): 733-737, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37316663

RESUMO

Knowledge of the interior structure and atmosphere of Mars is essential to understanding how the planet has formed and evolved. A major obstacle to investigations of planetary interiors, however, is that they are not directly accessible. Most of the geophysical data provide global information that cannot be separated into contributions from the core, the mantle and the crust. The NASA InSight mission changed this situation by providing high-quality seismic and lander radio science data1,2. Here we use the InSight's radio science data to determine fundamental properties of the core, mantle and atmosphere of Mars. By precisely measuring the rotation of the planet, we detected a resonance with a normal mode that allowed us to characterize the core and mantle separately. For an entirely solid mantle, we found that the liquid core has a radius of 1,835 ± 55 km and a mean density of 5,955-6,290 kg m-3, and that the increase in density at the core-mantle boundary is 1,690-2,110 kg m-3. Our analysis of InSight's radio tracking data argues against the existence of a solid inner core and reveals the shape of the core, indicating that there are internal mass anomalies deep within the mantle. We also find evidence of a slow acceleration in the Martian rotation rate, which could be the result of a long-term trend either in the internal dynamics of Mars or in its atmosphere and ice caps.

5.
Proc Natl Acad Sci U S A ; 120(18): e2217090120, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37094138

RESUMO

We present the first observations of seismic waves propagating through the core of Mars. These observations, made using seismic data collected by the InSight geophysical mission, have allowed us to construct the first seismically constrained models for the elastic properties of Mars' core. We observe core-transiting seismic phase SKS from two farside seismic events detected on Mars and measure the travel times of SKS relative to mantle traversing body waves. SKS travels through the core as a compressional wave, providing information about bulk modulus and density. We perform probabilistic inversions using the core-sensitive relative travel times together with gross geophysical data and travel times from other, more proximal, seismic events to seek the equation of state parameters that best describe the liquid iron-alloy core. Our inversions provide constraints on the velocities in Mars' core and are used to develop the first seismically based estimates of its composition. We show that models informed by our SKS data favor a somewhat smaller (median core radius = 1,780 to 1,810 km) and denser (core density = 6.2 to 6.3 g/cm3) core compared to previous estimates, with a P-wave velocity of 4.9 to 5.0 km/s at the core-mantle boundary, with the composition and structure of the mantle as a dominant source of uncertainty. We infer from our models that Mars' core contains a median of 20 to 22 wt% light alloying elements when we consider sulfur, oxygen, carbon, and hydrogen. These data can be used to inform models of planetary accretion, composition, and evolution.

6.
J Geophys Res Planets ; 127(10): e2022JE007229, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36582924

RESUMO

Interior exploration using Seismic Investigations, Geodesy and Heat Transport's (InSight) seismometer package Seismic Experiment for Interior Structure (SEIS) was placed on the surface of Mars at about 1.2 m distance from the thermal properties instrument Heat flow and Physical Properties Package (HP3) that includes a self-hammering probe. Recording the hammering noise with SEIS provided a unique opportunity to estimate the seismic wave velocities of the shallow regolith at the landing site. However, the value of studying the seismic signals of the hammering was only realized after critical hardware decisions were already taken. Furthermore, the design and nominal operation of both SEIS and HP3 are nonideal for such high-resolution seismic measurements. Therefore, a series of adaptations had to be implemented to operate the self-hammering probe as a controlled seismic source and SEIS as a high-frequency seismic receiver including the design of a high-precision timing and an innovative high-frequency sampling workflow. By interpreting the first-arriving seismic waves as a P-wave and identifying first-arriving S-waves by polarization analysis, we determined effective P- and S-wave velocities of v P = 11 9 - 21 + 45 m/s and v S = 6 3 - 7 + 11 m/s, respectively, from around 2,000 hammer stroke recordings. These velocities likely represent bulk estimates for the uppermost several 10s of cm of regolith. An analysis of the P-wave incidence angles provided an independent v P /v S ratio estimate of 1.8 4 - 0.35 + 0.89 that compares well with the traveltime based estimate of 1.8 6 - 0.25 + 0.42 . The low seismic velocities are consistent with those observed for low-density unconsolidated sands and are in agreement with estimates obtained by other methods.

7.
Nat Commun ; 13(1): 7950, 2022 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-36572693

RESUMO

The most distant marsquake recorded so far by the InSight seismometer occurred at an epicentral distance of 146.3 ± 6.9o, close to the western end of Valles Marineris. On the seismogram of this event, we have identified seismic wave precursors, i.e., underside reflections off a subsurface discontinuity halfway between the marsquake and the instrument, which directly constrain the crustal structure away (about 4100-4500 km) from the InSight landing site. Here we show that the Martian crust at the bounce point between the lander and the marsquake is characterized by a discontinuity at about 20 km depth, similar to the second (deeper) intra-crustal interface seen beneath the InSight landing site. We propose that this 20-km interface, first discovered beneath the lander, is not a local geological structure but likely a regional or global feature, and is consistent with a transition from porous to non-porous Martian crustal materials.


Assuntos
Meio Ambiente Extraterreno , Marte , Geologia
8.
Proc Natl Acad Sci U S A ; 119(42): e2204474119, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36215469

RESUMO

Constraining the thermal and compositional state of the mantle is crucial for deciphering the formation and evolution of Mars. Mineral physics predicts that Mars' deep mantle is demarcated by a seismic discontinuity arising from the pressure-induced phase transformation of the mineral olivine to its higher-pressure polymorphs, making the depth of this boundary sensitive to both mantle temperature and composition. Here, we report on the seismic detection of a midmantle discontinuity using the data collected by NASA's InSight Mission to Mars that matches the expected depth and sharpness of the postolivine transition. In five teleseismic events, we observed triplicated P and S waves and constrained the depth of this discontinuity to be 1,006 [Formula: see text] 40 km by modeling the triplicated waveforms. From this depth range, we infer a mantle potential temperature of 1,605 [Formula: see text] 100 K, a result consistent with a crust that is 10 to 15 times more enriched in heat-producing elements than the underlying mantle. Our waveform fits to the data indicate a broad gradient across the boundary, implying that the Martian mantle is more enriched in iron compared to Earth. Through modeling of thermochemical evolution of Mars, we observe that only two out of the five proposed composition models are compatible with the observed boundary depth. Our geodynamic simulations suggest that the Martian mantle was relatively cold 4.5 Gyr ago (1,720 to 1,860 K) and are consistent with a present-day surface heat flow of 21 to 24 mW/m2.


Assuntos
Meio Ambiente Extraterreno , Marte , Planeta Terra , Ferro , Minerais
9.
J Geophys Res Planets ; 127(12): e2022JE007472, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37033153

RESUMO

A North/South difference in crustal thickness is likely at the origin of the Martian dichotomy in topography. Recent crustal thickness maps were obtained by inversion of topography and gravity data seismically anchored at the InSight station. On average, the Martian crust is 51-71 km thick with a southern crust thicker by 18-28 km than the northern one. The origin of this crustal dichotomy is still debated although the hypothesis of a large impact is at present very popular. Here, we propose a new mechanism for the formation of this dichotomy that involves a positive feedback between crustal growth and mantle melting. As the crust is enriched in heat-producing elements, the lid of a one-plate planet is hotter and thinner where the crust is thicker, inducing a larger amount of partial melt below the lid and hence a larger rate of melt extraction and crustal growth. We first demonstrate analytically that larger wavelength perturbations, that is, hemispherical perturbations, grow faster because smaller wavelengths are more attenuated by thermal diffusion. We then use a parameterized thermal evolution model with a well-mixed mantle topped by two different lids characterized by their thermal structures and thicknesses to study the growth of the crust in the two hemispheres. Our results demonstrate that this positive feedback can generate a significant crustal dichotomy.

10.
J Geophys Res Planets ; 127(9): e2021JE007067, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36590820

RESUMO

We present inversions for the structure of Mars using the first Martian seismic record collected by the InSight lander. We identified and used arrival times of direct, multiples, and depth phases of body waves, for 17 marsquakes to constrain the quake locations and the one-dimensional average interior structure of Mars. We found the marsquake hypocenters to be shallower than 40 km depth, most of them being located in the Cerberus Fossae graben system, which could be a source of marsquakes. Our results show a significant velocity jump between the upper and the lower part of the crust, interpreted as the transition between intrusive and extrusive rocks. The lower crust makes up a significant fraction of the crust, with seismic velocities compatible with those of mafic to ultramafic rocks. Additional constraints on the crustal thickness from previous seismic analyses, combined with modeling relying on gravity and topography measurements, yield constraints on the present-day thermochemical state of Mars and on its long-term history. Our most constrained inversion results indicate a present-day surface heat flux of 22 ± 1 mW/m2, a relatively hot mantle (potential temperature: 1740 ± 90 K) and a thick lithosphere (540 ± 120 km), associated with a lithospheric thermal gradient of 1.9 ± 0.3 K/km. These results are compatible with recent seismic studies using a reduced data set and different inversion approaches, confirming that Mars' potential mantle temperature was initially relatively cold (1780 ± 50 K) compared to that of its present-day state, and that its crust contains 10-12 times more heat-producing elements than the primitive mantle.

11.
Earth Space Sci ; 8(8): e2020EA001234, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34595325

RESUMO

In December 2018, the NASA InSight lander successfully placed a seismometer on the surface of Mars. Alongside, a hammering device was deployed at the landing site that penetrated into the ground to attempt the first measurements of the planetary heat flow of Mars. The hammering of the heat probe generated repeated seismic signals that were registered by the seismometer and can potentially be used to image the shallow subsurface just below the lander. However, the broad frequency content of the seismic signals generated by the hammering extends beyond the Nyquist frequency governed by the seismometer's sampling rate of 100 samples per second. Here, we propose an algorithm to reconstruct the seismic signals beyond the classical sampling limits. We exploit the structure in the data due to thousands of repeated, only gradually varying hammering signals as the heat probe slowly penetrates into the ground. In addition, we make use of the fact that repeated hammering signals are sub-sampled differently due to the unsynchronized timing between the hammer strikes and the seismometer recordings. This allows us to reconstruct signals beyond the classical Nyquist frequency limit by enforcing a sparsity constraint on the signal in a modified Radon transform domain. In addition, the proposed method reduces uncorrelated noise in the recorded data. Using both synthetic data and actual data recorded on Mars, we show how the proposed algorithm can be used to reconstruct the high-frequency hammering signal at very high resolution.

12.
Science ; 373(6553): 434-438, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34437116

RESUMO

For 2 years, the InSight lander has been recording seismic data on Mars that are vital to constrain the structure and thermochemical state of the planet. We used observations of direct (P and S) and surface-reflected (PP, PPP, SS, and SSS) body-wave phases from eight low-frequency marsquakes to constrain the interior structure to a depth of 800 kilometers. We found a structure compatible with a low-velocity zone associated with a thermal lithosphere much thicker than on Earth that is possibly related to a weak S-wave shadow zone at teleseismic distances. By combining the seismic constraints with geodynamic models, we predict that, relative to the primitive mantle, the crust is more enriched in heat-producing elements by a factor of 13 to 20. This enrichment is greater than suggested by gamma-ray surface mapping and has a moderate-to-elevated surface heat flow.

13.
Science ; 373(6553): 438-443, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34437117

RESUMO

A planet's crust bears witness to the history of planetary formation and evolution, but for Mars, no absolute measurement of crustal thickness has been available. Here, we determine the structure of the crust beneath the InSight landing site on Mars using both marsquake recordings and the ambient wavefield. By analyzing seismic phases that are reflected and converted at subsurface interfaces, we find that the observations are consistent with models with at least two and possibly three interfaces. If the second interface is the boundary of the crust, the thickness is 20 ± 5 kilometers, whereas if the third interface is the boundary, the thickness is 39 ± 8 kilometers. Global maps of gravity and topography allow extrapolation of this point measurement to the whole planet, showing that the average thickness of the martian crust lies between 24 and 72 kilometers. Independent bulk composition and geodynamic constraints show that the thicker model is consistent with the abundances of crustal heat-producing elements observed for the shallow surface, whereas the thinner model requires greater concentration at depth.

14.
Science ; 373(6553): 443-448, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34437118

RESUMO

Clues to a planet's geologic history are contained in its interior structure, particularly its core. We detected reflections of seismic waves from the core-mantle boundary of Mars using InSight seismic data and inverted these together with geodetic data to constrain the radius of the liquid metal core to 1830 ± 40 kilometers. The large core implies a martian mantle mineralogically similar to the terrestrial upper mantle and transition zone but differing from Earth by not having a bridgmanite-dominated lower mantle. We inferred a mean core density of 5.7 to 6.3 grams per cubic centimeter, which requires a substantial complement of light elements dissolved in the iron-nickel core. The seismic core shadow as seen from InSight's location covers half the surface of Mars, including the majority of potentially active regions-e.g., Tharsis-possibly limiting the number of detectable marsquakes.

15.
Bull Seismol Soc Am ; 111(6): 3035-3054, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35001980

RESUMO

We investigate the scattering attenuation characteristics of the Martian crust and uppermost mantle to understand the structure of the Martian interior. We examine the energy decay of the spectral envelopes for 21 high-quality Martian seismic events from Sol 128 to Sol 500 of InSight operations. We use the model of Dainty et al. (1974b) to approximate the behavior of energy envelopes resulting from scattered wave propagation through a single diffusive layer over an elastic half-space. Using a grid search, we mapped the layer parameters that fit the observed InSight data envelopes. The single diffusive layer model provided better fits to the observed energy envelopes for High Frequency (HF) and Very High Frequency (VF) than for the Low Frequency (LF) and Broadband (BB) events. This result is consistent with the suggested source depths (Giardini et al., 2020) for these families of events and their expected interaction with a shallow scattering layer. The shapes of the observed data envelopes do not show a consistent pattern with event distance, suggesting that the diffusivity and scattering layer thickness is non-uniform in the vicinity of InSight at Mars. Given the consistency in the envelope shapes between HF and VF events across epicentral distances and the tradeoffs between the parameters that control scattering, the dimensions of the scattering layer remain unconstrained but require that scattering strength decreases with depth and that the rate of decay in scattering strength is fastest near the surface. This is generally consistent with the processes that would form scattering structures in planetary lithospheres.

16.
Sci Rep ; 10(1): 5232, 2020 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-32251306

RESUMO

Using the specific satellite line of sight geometry and station location with respect to the source, Thomas et al. [Scientific Reports, https://doi.org/10.1038/s41598-018-30476-9] developed a method to infer the detection altitude of co-seismic ionospheric perturbations observed in Global Positioning System (GPS) - Total Electron Content (TEC) measurements during the Mw 7.4 March 9, 2011 Sanriku-Oki earthquake, a foreshock of the Mw 9.0, March 11, 2011 Tohoku-Oki earthquake. Therefore, in addition to the spatio-temporal evolution, the altitude information of the seismically induced ionospheric signatures can also be derived now using GPS-TEC technique. However, this method considered a point source, in terms of a small rupture area (~90 km) during the Tohoku foreshock, for the generation of seismo-acoustic waves in 3D space and time. In this article, we explore further efficacy of GPS-TEC technique during co-seismic ionospheric sounding for an extended seismic source varying simultaneously in space and time akin to the rupture of Mw 9.0 Tohoku-Oki mainshock and the limitations to be aware of in such context. With the successful execution of the method by Thomas et al. during the Tohoku-Oki mainshock, we not only estimate the detection altitude of GPS-TEC derived co-seismic ionospheric signatures but also delineate, for the first time, distinct ground seismic sources responsible for the generation of these perturbations, which evolved during the initial 60 seconds of the rupture. Simulated tsunami water excitation over the fault region, to envisage the evolution of crustal deformation in space and time along the rupture, formed the base for our model analysis. Further, the simulated water displacement assists our proposed novel approach to delineate the ground seismic sources entirely based on the ensuing ionospheric perturbations which were otherwise not well reproduced by the ground rupture process within this stipulated time. Despite providing the novel information on the segmentation of the Tohoku-Oki seismic source based on the co-seismic ionospheric response to the initial 60 seconds of the event, our model could not reproduce precise rupture kinematics over this period. This shortcoming is also credited to the specific GPS satellite-station viewing geometries.

17.
Nature ; 569(7757): 523-527, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31118524

RESUMO

The evolution and internal structure of Mars are, by comparison to its present-day surface, poorly known-although evidence of recent volcanic activity1 suggests that its deep interior remains hot and convectively cooling. The cooling rate of Mars is related to its early thermal state and to its rheology, which determines its ability to deform and to dynamically evolve2. Attempts to reconstruct the dynamic history of Mars and reveal its present-day structure, by combining the study of thermal evolution with surface observations, are limited by the interplay between several key quantities-including temperature, composition and rheology. Here we show that by considering Phobos (the closest satellite of Mars)-the orbital evolution of which is governed by the thermochemical history of Mars, through tidal interactions-we can gain insight into the thermal history and rheology of the planet. We investigated the long-term evolution of the main envelopes of Mars; these comprise a liquid metallic core that is overlain by a homogeneous silicate convecting mantle underneath an evolving heterogeneous lithospheric lid that includes a crust enriched in radiogenic elements. By exploiting the relationship between Mars and Phobos within an established in situ scenario for the early origin of the moons of Mars3, we find that-initially-Mars was moderately hotter (100 to 200 kelvin) than it is today, and that its mantle sluggishly deforms in the dislocation creep regime. This corresponds to a reference viscosity of 1022.2 ± 0.5 pascal seconds and to a moderate to relatively weak intrinsic sensitivity of viscosity to temperature and pressure. Our approach predicts a present-day average crustal thickness of 40 ± 25 kilometres and a surface heat flow of 20 ± 1 milliwatts per square metre. We show that combining these predictions with data from future and ongoing space missions-such as InSight-could reduce uncertainties in Martian thermal and rheological histories, and help to uncover the origin of Phobos.

18.
Astrobiology ; 18(1): 37-53, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29345986

RESUMO

Ice-covered ocean worlds possess diverse energy sources and associated mechanisms that are capable of driving significant seismic activity, but to date no measurements of their seismic activity have been obtained. Such investigations could reveal the transport properties and radial structures, with possibilities for locating and characterizing trapped liquids that may host life and yielding critical constraints on redox fluxes and thus on habitability. Modeling efforts have examined seismic sources from tectonic fracturing and impacts. Here, we describe other possible seismic sources, their associations with science questions constraining habitability, and the feasibility of implementing such investigations. We argue, by analogy with the Moon, that detectable seismic activity should occur frequently on tidally flexed ocean worlds. Their ices fracture more easily than rocks and dissipate more tidal energy than the <1 GW of the Moon and Mars. Icy ocean worlds also should create less thermal noise due to their greater distance and consequently smaller diurnal temperature variations. They also lack substantial atmospheres (except in the case of Titan) that would create additional noise. Thus, seismic experiments could be less complex and less susceptible to noise than prior or planned planetary seismology investigations of the Moon or Mars. Key Words: Seismology-Redox-Ocean worlds-Europa-Ice-Hydrothermal. Astrobiology 18, 37-53.


Assuntos
Exobiologia/métodos , Meio Ambiente Extraterreno , Gelo , Oceanos e Mares , Ondas de Maré , Marte , Lua , Temperatura
19.
Nat Commun ; 7: 13349, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27874858

RESUMO

Transient gravity changes are expected to occur at all distances during an earthquake rupture, even before the arrival of seismic waves. Here we report on the search of such a prompt gravity signal in data recorded by a superconducting gravimeter and broadband seismometers during the 2011 Mw 9.0 Tohoku-Oki earthquake. During the earthquake rupture, a signal exceeding the background noise is observed with a statistical significance higher than 99% and an amplitude of a fraction of µGal, consistent in sign and order of magnitude with theoretical predictions from a first-order model. While prompt gravity signal detection with state-of-the-art gravimeters and seismometers is challenged by background seismic noise, its robust detection with gravity gradiometers under development could open new directions in earthquake seismology, and overcome fundamental limitations of current earthquake early-warning systems imposed by the propagation speed of seismic waves.

20.
J Acoust Soc Am ; 140(2): 1447, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27586770

RESUMO

Acoustic coupling between solid Earth and atmosphere has been observed since the 1960s, first from ground-based seismic, pressure, and ionospheric sensors and since 20 years with various satellite measurements, including with global positioning system (GPS) satellites. This coupling leads to the excitation of the Rayleigh surface waves by local atmospheric sources such as large natural explosions from volcanoes, meteor atmospheric air-bursts, or artificial explosions. It contributes also in the continuous excitation of Rayleigh waves and associated normal modes by atmospheric winds and pressure fluctuations. The same coupling allows the observation of Rayleigh waves in the thermosphere most of the time through ionospheric monitoring with Doppler sounders or GPS. The authors review briefly in this paper observations made on Earth and describe the general frame of the theory enabling the computation of Rayleigh waves for models of telluric planets with atmosphere. The authors then focus on Mars and Venus and give in both cases the atmospheric properties of the Rayleigh normal modes and associated surface waves compared to Earth. The authors then conclude on the observation perspectives especially for Rayleigh waves excited by atmospheric sources on Mars and for remote ionospheric observations of Rayleigh waves excited by quakes on Venus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA