Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Catal ; 14(14): 10648-10657, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39050900

RESUMO

Modifying traditional Co/TiO2-based Fischer-Tropsch (FT) catalysts with Mn promoters induces a selectivity shift from long-chain paraffins toward commercially desirable alcohols and olefins. In this work, we use in situ gas cell scanning transmission electron microscopy (STEM) with energy-dispersive X-ray spectroscopy (EDS) elemental mapping, and near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) to demonstrate how the elemental dispersion and chemical structure of the as-calcined materials evolve during the H2 activation heat treatment required for industrial CoMn/TiO2 FT catalysts. We find that Mn additions reduce both the mean Co particle diameter and the size distribution but that the Mn remains dispersed on the support after the activation step. Density functional theory calculations show that the slower surface diffusion of Mn is likely due to the lower number of energetically accessible sites for the Mn on the titania support and that favorable Co-Mn interactions likely cause greater dispersion and slower sintering of Co in the Mn-promoted catalyst. These mechanistic insights into how the introduction of Mn tunes the Co nanoparticle size can be applied to inform the design of future-supported nanoparticle catalysts for FT and other heterogeneous catalytic processes.

2.
J Chem Phys ; 161(1)2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38958157

RESUMO

Modern software engineering of electronic structure codes has seen a paradigm shift from monolithic workflows toward object-based modularity. Software objectivity allows for greater flexibility in the application of electronic structure calculations, with particular benefits when integrated with approaches for data-driven analysis. Here, we discuss different approaches to create deep modular interfaces that connect big-data workflows and electronic structure codes and explore the diversity of use cases that they can enable. We present two such interface approaches for the semi-empirical electronic structure package, DFTB+. In one case, DFTB+ is applied as a library and provides data to an external workflow; in another, DFTB+receives data via external bindings and processes the information subsequently within an internal workflow. We provide a general framework to enable data exchange workflows for embedding new machine-learning-based Hamiltonians within DFTB+ or enabling deep integration of DFTB+ in multiscale embedding workflows. These modular interfaces demonstrate opportunities in emergent software and workflows to accelerate scientific discovery by harnessing existing software capabilities.

3.
Angew Chem Int Ed Engl ; 63(20): e202400174, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38466808

RESUMO

The nature of the support can fundamentally affect the function of a heterogeneous catalyst. For the novel type of isolated metal atom catalysts, sometimes referred to as single-atom catalysts, systematic correlations are still rare. Here, we report a general finding that Pd on nitride supports (non-metal and metal nitride) features a higher oxidation state compared to that on oxide supports (non-metal and metal oxide). Through thorough oxidation state investigations by X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS), CO-DRIFTS, and density functional theory (DFT) coupled with Bader charge analysis, it is found that Pd atoms prefer to interact with surface hydroxyl group to form a Pd(OH)x species on oxide supports, while on nitride supports, Pd atoms incorporate into the surface structure in the form of Pd-N bonds. Moreover, a correlation was built between the formal oxidation state and computational Bader charge, based on the periodic trend in electronegativity.

4.
J Phys Chem C Nanomater Interfaces ; 127(38): 19072-19087, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37791098

RESUMO

Sn-doped zeolites are potent Lewis acid catalysts for important reactions in the context of green and sustainable chemistry; however, their synthesis can have long reaction times and harsh chemical requirements, presenting an obstacle to scale-up and industrial application. To incorporate Sn into the ß zeolite framework, solid-state incorporation (SSI) has recently been demonstrated as a fast and solvent-free synthetic method, with no impairment to the high activity and selectivity associated with Sn-ß for its catalytic applications. Here, we report an ab initio computational study that combines periodic density functional theory with high-level embedded-cluster quantum/molecular mechanical (QM/MM) to elucidate the mechanistic steps in the synthetic process. Initially, once the Sn(II) acetate precursor coordinates to the ß framework, acetic acid forms via a facile hydrogen transfer from the ß framework onto the monodentate acetate ligand, with low kinetic barriers for subsequent dissociation of the ligand from the framework-bound Sn. Ketonization of the dissociated acetic acid can occur over the Lewis acidic Sn(II) site to produce CO2 and acetone with a low kinetic barrier (1.03 eV) compared to a gas-phase process (3.84 eV), helping to explain product distributions in good accordance with experimental analysis. Furthermore, we consider the oxidation of the Sn(II) species to form the Sn(IV) active site in the material by O2- and H2O-mediated mechanisms. The kinetic barrier for oxidation via H2 release is 3.26 eV, while the H2O-mediated dehydrogenation process has a minimum barrier of 1.38 eV, which indicates the possible role of residual H2O in the experimental observations of SSI synthesis. However, we find that dehydrogenation is facilitated more significantly by the presence of dioxygen (O2), introduced in the compressed air gas feed, via a two-step process oxidation process that forms H2O2 as an intermediate and has greatly reduced kinetic barriers of 0.25 and 0.26 eV. The results provide insight into how Sn insertion into ß occurs during SSI and demonstrate the possible mechanism of top-down synthetic procedures for metal insertion into zeolites.

5.
J Phys Chem C Nanomater Interfaces ; 127(32): 16030-16040, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37609380

RESUMO

The characterization of zeolitic materials is often facilitated by spectroscopic analysis of vibrations, which informs about the bonding character of the substrate and any adsorbents. Computational simulations aid the interpretation of the spectra but often ignore anharmonic effects that can affect the spectral characteristics significantly. Here, the impact of anharmonicity is demonstrated with a combination of dynamical and static simulations applied to the structures formed during the synthesis of Sn-BEA via solid-state incorporation (SSI): the initial siliceous BEA (Si-ß), aluminosilicate BEA (H-ß), dealuminated BEA (deAl-ß), and Sn-BEA (Sn-ß). Heteroatom and defect-containing BEA are shown to have strong anharmonic vibrational contributions, with atomic and elemental resolution highlighting particularly the prevalence for H atoms (H-ß, deAl-ß) as well as localization to heteroatoms at defect sites. We simulate the vibrational spectra of BEA accounting for anharmonic contributions and observe an improved agreement with experimental data compared to harmonic methods, particularly at wavenumbers below 1500 cm-1. The results demonstrate the importance of incorporating anharmonic effects in simulations of vibrational spectra, with consequences toward future characterization and application of zeolitic materials.

6.
J Phys Chem C Nanomater Interfaces ; 127(32): 16187-16203, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37609382

RESUMO

Polycrystalline boron-doped diamond (BDD) is widely used as a working electrode material in electrochemistry, and its properties, such as its stability, make it an appealing support material for nanostructures in electrocatalytic applications. Recent experiments have shown that electrodeposition can lead to the creation of stable small nanoclusters and even single gold adatoms on the BDD surfaces. We investigate the adsorption energy and kinetic stability of single gold atoms adsorbed onto an atomistic model of BDD surfaces by using density functional theory. The surface model is constructed using hybrid quantum mechanics/molecular mechanics embedding techniques and is based on an oxygen-terminated diamond (110) surface. We use the hybrid quantum mechanics/molecular mechanics method to assess the ability of different density functional approximations to predict the adsorption structure, energy, and barrier for diffusion on pristine and defective surfaces. We find that surface defects (vacancies and surface dopants) strongly anchor adatoms on vacancy sites. We further investigated the thermal stability of gold adatoms, which reveals high barriers associated with lateral diffusion away from the vacancy site. The result provides an explanation for the high stability of experimentally imaged single gold adatoms on BDD and a starting point to investigate the early stages of nucleation during metal surface deposition.

7.
J Phys Condens Matter ; 35(40)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37339653

RESUMO

The identification of the stable phases in alloy materials is challenging because composition affects the structural stability of different intermediate phases. Computational simulation, via multiscale modelling approaches, can significantly accelerate the exploration of phase space and help to identify stable phases. Here, we apply such new approaches to understand the complex phase diagram of binary alloys of PdZn, with the relative stability of structural polymorphs considered through application of density functional theory coupled with cluster expansion (CE). The experimental phase diagram has several competing crystal structures, and we focus on three different closed-packed phases that are commonly observed for PdZn, namely the face-centred cubic (FCC), body-centred tetragonal (BCT) and hexagonal close packed (HCP), to identify their respective stability ranges. Our multiscale approach confirms a narrow range of stability for the BCT mixed alloy, within the Zn concentration range from 43.75% to 50%, which aligns with experimental observations. We subsequently use CE to show that the phases are competitive across all concentrations, but with the FCC alloy phase favoured for Zn concentrations below 43.75%, and that the HCP structure favoured for Zn-rich concentrations. Our methodology and results provide a platform for future investigations of PdZn and other close-packed alloy systems with multiscale modelling techniques.


Assuntos
Ligas , Zinco , Simulação por Computador
8.
Philos Trans A Math Phys Eng Sci ; 381(2250): 20220234, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37211033

RESUMO

Vibrational spectroscopy is one of the most well-established and important techniques for characterizing chemical systems. To aid the interpretation of experimental infrared and Raman spectra, we report on recent theoretical developments in the ChemShell computational chemistry environment for modelling vibrational signatures. The hybrid quantum mechanical and molecular mechanical approach is employed, using density functional theory for the electronic structure calculations and classical forcefields for the environment. Computational vibrational intensities at chemical active sites are reported using electrostatic and fully polarizable embedding environments to achieve more realistic vibrational signatures for materials and molecular systems, including solvated molecules, proteins, zeolites and metal oxide surfaces, providing useful insight into the effect of the chemical environment on the signatures obtained from experiment. This work has been enabled by the efficient task-farming parallelism implemented in ChemShell for high-performance computing platforms.  This article is part of a discussion meeting issue 'Supercomputing simulations of advanced materials'.

9.
Phys Chem Chem Phys ; 25(33): 21816-21835, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37097706

RESUMO

Hybrid quantum mechanical/molecular mechanical (QM/MM) methods are a powerful computational tool for the investigation of all forms of catalysis, as they allow for an accurate description of reactions occurring at catalytic sites in the context of a complicated electrostatic environment. The scriptable computational chemistry environment ChemShell is a leading software package for QM/MM calculations, providing a flexible, high performance framework for modelling both biomolecular and materials catalysis. We present an overview of recent applications of ChemShell to problems in catalysis and review new functionality introduced into the redeveloped Python-based version of ChemShell to support catalytic modelling. These include a fully guided workflow for biomolecular QM/MM modelling, starting from an experimental structure, a periodic QM/MM embedding scheme to support modelling of metallic materials, and a comprehensive set of tutorials for biomolecular and materials modelling.

10.
Phys Chem Chem Phys ; 25(9): 6562-6585, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36810655

RESUMO

The QM/MM simulation method is provenly efficient for the simulation of biological systems, where an interplay of extensive environment and delicate local interactions drives a process of interest through a funnel on a complex energy landscape. Recent advances in quantum chemistry and force-field methods present opportunities for the adoption of QM/MM to simulate heterogeneous catalytic processes, and their related systems, where similar intricacies exist on the energy landscape. Herein, the fundamental theoretical considerations for performing QM/MM simulations, and the practical considerations for setting up QM/MM simulations of catalytic systems, are introduced; then, areas of heterogeneous catalysis are explored where QM/MM methods have been most fruitfully applied. The discussion includes simulations performed for adsorption processes in solvent at metallic interfaces, reaction mechanisms within zeolitic systems, nanoparticles, and defect chemistry within ionic solids. We conclude with a perspective on the current state of the field and areas where future opportunities for development and application exist.

11.
Faraday Discuss ; 242(0): 193-211, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36189732

RESUMO

A number of Pd based materials have been synthesised and evaluated as catalysts for the conversion of carbon dioxide and hydrogen to methanol, a useful platform chemical and hydrogen storage molecule. Monometallic Pd catalysts show poor methanol selectivity, but this is improved through the formation of Pd alloys, with both PdZn and PdGa alloys showing greatly enhanced methanol productivity compared with monometallic Pd/Al2O3 and Pd/TiO2 catalysts. Catalyst characterisation shows that the 1 : 1 ß-PdZn alloy is present in all Zn containing post-reaction samples, including PdZn/Ga2O3, with the Pd2Ga alloy formed for the Pd/Ga2O3 sample. The heat of mixing was calculated for a variety of alloy compositions with high values determined for both PdZn and Pd2Ga alloys, at ca. -0.6 eV per atom and ca. -0.8 eV per atom, respectively. However, ZnO is more readily reduced than Ga2O3, providing a possible explanation for the preferential formation of the PdZn alloy, rather than PdGa, when in the presence of Ga2O3.

12.
Catal Today ; 384-386: 197-208, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35992247

RESUMO

The dehydrogenation and dehydration of formic acid is investigated on the ß-Mo2C (100) catalyst surface using time independent density functional theory. The energetics of the two mechanisms are calculated, and the thermochemistry and kinetics are discussed using the transition state theory. Subsequently, microkinetic modelling of the system is conducted, considering the batch reactor model. The potential energy landscape of the reaction shows a thermodynamically favourable cleavage of H-COOH to form CO; however, the kinetics show that the dehydrogenation mechanism is faster and CO2 is continuously formed. The effect of HCOOH adsorption on the surface is also analysed, in a temperature-programmed desorption, with the conversion proceeding at under 350 K and desorption of CO2 is observed with a selectivity of about 100 %, in line with the experimental reports.

13.
Chem Sci ; 13(18): 5277-5288, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35655549

RESUMO

We report the crystal structure of a new polymorph of l-tyrosine (denoted the ß polymorph), prepared by crystallization from the gas phase following vacuum sublimation. Structure determination was carried out by combined analysis of three-dimensional electron diffraction (3D-ED) data and powder X-ray diffraction (XRD) data. Specifically, 3D-ED data were required for reliable unit cell determination and space group assignment, with structure solution carried out independently from both 3D-ED data and powder XRD data, using the direct-space strategy for structure solution implemented using a genetic algorithm. Structure refinement was carried out both from powder XRD data, using the Rietveld profile refinement technique, and from 3D-ED data. The final refined structure was validated both by periodic DFT-D calculations, which confirm that the structure corresponds to an energy minimum on the energy landscape, and by the fact that the values of isotropic 13C NMR chemical shifts calculated for the crystal structure using DFT-D methodology are in good agreement with the experimental high-resolution solid-state 13C NMR spectrum. Based on DFT-D calculations using the PBE0-MBD method, the ß polymorph is meta-stable with respect to the previously reported crystal structure of l-tyrosine (now denoted the α polymorph). Crystal structure prediction calculations using the AIRSS approach suggest that there are three other plausible crystalline polymorphs of l-tyrosine, with higher energy than the α and ß polymorphs.

14.
ACS Catal ; 12(9): 5371-5379, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35557711

RESUMO

The rise in atmospheric CO2 concentration and the concomitant rise in global surface temperature have prompted massive research effort in designing catalytic routes to utilize CO2 as a feedstock. Prime among these is the hydrogenation of CO2 to make methanol, which is a key commodity chemical intermediate, a hydrogen storage molecule, and a possible future fuel for transport sectors that cannot be electrified. Pd/ZnO has been identified as an effective candidate as a catalyst for this reaction, yet there has been no attempt to gain a fundamental understanding of how this catalyst works and more importantly to establish specific design criteria for CO2 hydrogenation catalysts. Here, we show that Pd/ZnO catalysts have the same metal particle composition, irrespective of the different synthesis procedures and types of ZnO used here. We demonstrate that all of these Pd/ZnO catalysts exhibit the same activity trend. In all cases, the ß-PdZn 1:1 alloy is produced and dictates the catalysis. This conclusion is further supported by the relationship between conversion and selectivity and their small variation with ZnO surface area in the range 6-80 m2g-1. Without alloying with Zn, Pd is a reverse water-gas shift catalyst and when supported on alumina and silica is much less active for CO2 conversion to methanol than on ZnO. Our approach is applicable to the discovery and design of improved catalysts for CO2 hydrogenation and will aid future catalyst discovery.

15.
Phys Chem Chem Phys ; 24(16): 9360-9373, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35383806

RESUMO

The reaction mechanism of direct CO2 hydrogenation to methanol is investigated in detail on Pd (111), (100) and (110) surfaces using density functional theory (DFT), supporting investigations into emergent Pd-based catalysts. Hydrogen adsorption and surface mobility are firstly considered, with high-coordination surface sites having the largest adsorption energy and being connected by diffusion channels with low energy barriers. Surface chemisorption of CO2, forming a partially charged CO2δ-, is weakly endothermic on a Pd (111) whilst slightly exothermic on Pd (100) and (110), with adsorption enthalpies of 0.09, -0.09 and -0.19 eV, respectively; the low stability of CO2δ- on the Pd (111) surface is attributed to negative charge accumulating on the surface Pd atoms that interact directly with the CO2δ- adsorbate. Detailed consideration for sequential hydrogenation of the CO2 shows that HCOOH hydrogenation to H2COOH would be the rate determining step in the conversion to methanol, for all surfaces, with activation barriers of 1.41, 1.51, and 0.84 eV on Pd (111), (100) and (110) facets, respectively. The Pd (110) surface exhibits overall lower activation energies than the most studied Pd (111) and (100) surfaces, and therefore should be considered in more detail in future Pd catalytic studies.

16.
Chem Rev ; 122(6): 6795-6849, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35263103

RESUMO

The development and application of trimetallic nanoparticles continues to accelerate rapidly as a result of advances in materials design, synthetic control, and reaction characterization. Following the technological successes of multicomponent materials in automotive exhausts and photovoltaics, synergistic effects are now accessible through the careful preparation of multielement particles, presenting exciting opportunities in the field of catalysis. In this review, we explore the methods currently used in the design, synthesis, analysis, and application of trimetallic nanoparticles across both the experimental and computational realms and provide a critical perspective on the emergent field of trimetallic nanocatalysts. Trimetallic nanoparticles are typically supported on high-surface-area metal oxides for catalytic applications, synthesized via preparative conditions that are comparable to those applied for mono- and bimetallic nanoparticles. However, controlled elemental segregation and subsequent characterization remain challenging because of the heterogeneous nature of the systems. The multielement composition exhibits beneficial synergy for important oxidation, dehydrogenation, and hydrogenation reactions; in some cases, this is realized through higher selectivity, while activity improvements are also observed. However, challenges related to identifying and harnessing influential characteristics for maximum productivity remain. Computation provides support for the experimental endeavors, for example in electrocatalysis, and a clear need is identified for the marriage of simulation, with respect to both combinatorial element screening and optimal reaction design, to experiment in order to maximize productivity from this nascent field. Clear challenges remain with respect to identifying, making, and applying trimetallic catalysts efficiently, but the foundations are now visible, and the outlook is strong for this exciting chemical field.


Assuntos
Nanopartículas , Catálise , Hidrogenação , Nanopartículas/química , Oxirredução , Óxidos
17.
Cryst Growth Des ; 22(1): 524-534, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35024003

RESUMO

We report the solid-state structural properties of alloxazine, a tricyclic ring system found in many biologically important molecules, with structure determination carried out directly from powder X-ray diffraction (XRD) data. As the crystal structures containing the alloxazine and isoalloxazine tautomers both give a high-quality fit to the powder XRD data in Rietveld refinement, other techniques are required to establish the tautomeric form in the solid state. In particular, high-resolution solid-state 15N NMR data support the presence of the alloxazine tautomer, based on comparison between isotropic chemical shifts in the experimental 15N NMR spectrum and the corresponding values calculated for the crystal structures containing the alloxazine and isoalloxazine tautomers. Furthermore, periodic DFT-D calculations at the PBE0-MBD level indicate that the crystal structure containing the alloxazine tautomer has significantly lower energy. We also report computational investigations of the interconversion between the tautomeric forms in the crystal structure via proton transfer along two intermolecular N-H···N hydrogen bonds; DFT-D calculations at the PBE0-MBD level indicate that the tautomeric interconversion is associated with a lower energy transition state for a mechanism involving concerted (rather than sequential) proton transfer along the two hydrogen bonds. However, based on the relative energies of the crystal structures containing the alloxazine and isoalloxazine tautomers, it is estimated that under conditions of thermal equilibrium at ambient temperature, more than 99.9% of the molecules in the crystal structure will exist as the alloxazine tautomer.

18.
Phys Chem Chem Phys ; 23(38): 21437-21469, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34569573

RESUMO

The formation of the first C-C bond and primary olefins from methanol over zeolite and zeotype catalysts has been studied for over 40 years. Over 20 mechanisms have been proposed for the formation of the first C-C bond. In this quantitative multiscale perspective, we decouple the adsorption, desorption, mobility, and surface reactions of early species through a combination of vacuum and sub-vacuum studies using temporal analysis of products (TAP) reactor systems, and through studies with atmospheric fixed bed reactors. These results are supplemented with density functional theory calculations and data-driven physical models, using partial differential equations, that describe the temporal and spatial evolution of species. We consider the effects of steam, early degradation species, and product masking due to the inherent autocatalytic nature of the process, which all complicate the observation of the primary olefin(s). Although quantitative spectroscopic determination of the lifetimes, surface mobility, and reactivity of adspecies is still lacking in the literature, we observe that reaction barriers are competitive with adsorption enthalpies and/or activation energies of desorption, while facile diffusion occurs in the porous structures of the zeolite/zeotype catalysts. Understanding the various processes allows for quantitative evaluation of their competing energetics, which leads to molecular insights as to what governs the catalytic activity during the conversion of methanol to primary olefins over zeolite/zeotype catalysts.

19.
Phys Chem Chem Phys ; 23(32): 17634-17644, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34369957

RESUMO

The conversion of methanol-to-hydrocarbons (MTH) is known to occur via an autocatalytic process in zeolites, where framework-bound methoxy species play a pivotal role, especially during catalyst induction. Recent NMR and FT-IR experimental studies suggest that methoxylated zeolites are able to produce hydrocarbons by a mechanism involving carbene migration and association. In order to understand these observations, we have performed QM/MM computational investigations on a range of reaction mechanisms for the reaction of zeolite bound methoxy and carbene groups, which are proposed to initiate hydrocarbon formation in the MTH process. Our simulations demonstrate that it is kinetically unfavourable for methyl species to form on the framework away from the zeolite acid site, and both kinetically and thermodynamically unfavourable for methyl groups to migrate through the framework and aggregate around an acid site. Formation of carbene moieties was considered as an alternative pathway to the formation of C-C bonds; however, the reaction energy for conversion of a methyl to a carbene is unfavourable. Metadynamics simulations help confirm further that methyl species at the framework acid sites would be more reactive towards formed C2+ species, rather than inter-framework migration, and that the role of carbenes in the formation of the first C-C bond will be via a concerted type of mechanism rather than stepwise.

20.
Phys Chem Chem Phys ; 23(27): 14649-14661, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34212951

RESUMO

We report a detailed Density Functional Theory (DFT) based investigation of the structure and stability of bulk and surface structures for the Group 10-12 elements Pd, Cu and Zn, considering the effect of the choice of exchange-correlation density functional and computation parameters. For the initial bulk structures, the lattice parameter and cohesive energy are calculated, which are then augmented by calculation of surface energies and work functions for the lower-index surfaces. Of the 22 density functionals considered, we highlight the mBEEF density functional as providing the best overall agreement with experimental data. The optimal density functional choice is applied to the study of higher index surfaces for the three metals, and Wulff constructions performed for nanoparticles with a radius of 11 nm, commensurate with nanoparticle sizes commonly employed in catalytic chemistry. For Pd and Cu, the low-index (111) facet is dominant in the constructed nanoparticles, covering ∼50% of the surface, with (100) facets covering a further 10 to 25%; however, non-negligible coverage from higher index (332), (332) and (210) facets is also observed for Pd, and (322), (221) and (210) surfaces are observed for Cu. In contrast, only the (0001) and (10-10) facets are observed for Zn. Overall, our results highlight the need for careful validation of computational settings before performing extensive density functional theory investigations of surface properties and nanoparticle structures of metals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA