Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
PLoS Negl Trop Dis ; 14(1): e0007897, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31961856

RESUMO

Oropouche virus (OROV) is responsible for outbreaks of Oropouche fever in parts of South America. We recently identified and isolated OROV from a febrile Ecuadorian patient, however, a previously published qRT-PCR assay did not detect OROV in the patient sample. A primer mismatch to the Ecuadorian OROV lineage was identified from metagenomic sequencing data. We report the optimisation of an qRT-PCR assay for the Ecuadorian OROV lineage, which subsequently identified a further five cases in a cohort of 196 febrile patients. We isolated OROV via cell culture and developed an algorithmically-designed primer set for whole-genome amplification of the virus. Metagenomic sequencing of the patient samples provided OROV genome coverage ranging from 68-99%. The additional cases formed a single phylogenetic cluster together with the initial case. OROV should be considered as a differential diagnosis for Ecuadorian patients with febrile illness to avoid mis-diagnosis with other circulating pathogens.


Assuntos
Infecções por Bunyaviridae/virologia , Orthobunyavirus/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Infecções por Bunyaviridae/diagnóstico , Estudos de Coortes , Equador , Genoma Viral , Humanos , Metagenoma , Orthobunyavirus/classificação , Orthobunyavirus/genética , Filogenia , RNA Viral/genética
2.
J Virol ; 94(5)2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31801869

RESUMO

The Amazon basin is home to numerous arthropod-borne viral pathogens that cause febrile disease in humans. Among these, Oropouche orthobunyavirus (OROV) is a relatively understudied member of the genus Orthobunyavirus, family Peribunyaviridae, that causes periodic outbreaks in human populations in Brazil and other South American countries. Although several studies have described the genetic diversity of the virus, the evolutionary processes that shape the OROV genome remain poorly understood. Here, we present a comprehensive study of the genomic dynamics of OROV that encompasses phylogenetic analysis, evolutionary rate estimates, inference of natural selective pressures, recombination and reassortment, and structural analysis of OROV variants. Our study includes all available published sequences, as well as a set of new OROV genome sequences obtained from patients in Ecuador, representing the first set of genomes from this country. Our results show differing evolutionary processes on the three segments that comprise the viral genome. We infer differing times of the most recent common ancestors of the genome segments and propose that this can be explained by cryptic reassortment. We also present the discovery of previously unobserved putative N-linked glycosylation sites, as well as codons that evolve under positive selection on the viral surface proteins, and discuss the potential role of these features in the evolution of OROV through a combined phylogenetic and structural approach.IMPORTANCE The emergence and reemergence of pathogens such as Zika virus, chikungunya virus, and yellow fever virus have drawn attention toward other cocirculating arboviruses in South America. Oropouche virus (OROV) is a poorly studied pathogen responsible for over a dozen outbreaks since the early 1960s and represents a public health burden to countries such as Brazil, Panama, and Peru. OROV is likely underreported since its symptomatology can be easily confounded with other febrile illnesses (e.g., dengue fever and leptospirosis) and point-of-care testing for the virus is still uncommon. With limited data, there is a need to optimize the information currently available. Analysis of OROV genomes can help us understand how the virus circulates in nature and can reveal the evolutionary forces that shape the genetic diversity of the virus, which has implications for molecular diagnostics and the design of potential vaccines.


Assuntos
Evolução Molecular , Genoma Viral , Orthobunyavirus/classificação , Orthobunyavirus/genética , Filogenia , Infecções por Bunyaviridae/epidemiologia , Infecções por Bunyaviridae/virologia , Equador , Humanos , Modelos Moleculares , Conformação Proteica , Seleção Genética , América do Sul , Proteínas Virais/química , Proteínas Virais/genética , Sequenciamento Completo do Genoma
4.
Emerg Infect Dis ; 24(5): 935-937, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29664378

RESUMO

We report identification of an Oropouche virus strain in a febrile patient from Ecuador by using metagenomic sequencing and real-time reverse transcription PCR. Virus was isolated from patient serum by using Vero cells. Phylogenetic analysis of the whole-genome sequence showed the virus to be similar to a strain from Peru.


Assuntos
Infecções por Bunyaviridae/virologia , Orthobunyavirus/isolamento & purificação , Adulto , Animais , Infecções por Bunyaviridae/epidemiologia , Chlorocebus aethiops , Equador/epidemiologia , Humanos , Masculino , Orthobunyavirus/genética , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Vero
5.
Philos Trans R Soc Lond B Biol Sci ; 372(1721)2017 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-28396470

RESUMO

As part of the UK response to the 2013-2016 Ebola virus disease (EVD) epidemic in West Africa, Public Health England (PHE) were tasked with establishing three field Ebola virus (EBOV) diagnostic laboratories in Sierra Leone by the UK Department for International Development (DFID). These provided diagnostic support to the Ebola Treatment Centre (ETC) facilities located in Kerry Town, Makeni and Port Loko. The Novel and Dangerous Pathogens (NADP) Training group at PHE, Porton Down, designed and implemented a pre-deployment Ebola diagnostic laboratory training programme for UK volunteer scientists being deployed to the PHE EVD laboratories. Here, we describe the training, workflow and capabilities of these field laboratories for use in response to disease epidemics and in epidemiological surveillance. We discuss the training outcomes, the laboratory outputs, lessons learned and the legacy value of the support provided. We hope this information will assist in the recruitment and training of staff for future responses and in the design and implementation of rapid deployment diagnostic field laboratories for future outbreaks of high consequence pathogens.This article is part of the themed issue 'The 2013-2016 West African Ebola epidemic: data, decision-making and disease control'.


Assuntos
Ebolavirus/fisiologia , Doença pelo Vírus Ebola/prevenção & controle , Saúde Pública/educação , Inglaterra , Humanos , Laboratórios/organização & administração , Serra Leoa
6.
J Infect Dis ; 214(suppl 3): S250-S257, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27638946

RESUMO

BACKGROUND: A unit of the European Mobile Laboratory (EMLab) consortium was deployed to the Ebola virus disease (EVD) treatment unit in Guéckédou, Guinea, from March 2014 through March 2015. METHODS: The unit diagnosed EVD and malaria, using the RealStar Filovirus Screen reverse transcription-polymerase chain reaction (RT-PCR) kit and a malaria rapid diagnostic test, respectively. RESULTS: The cleaned EMLab database comprised 4719 samples from 2741 cases of suspected EVD from Guinea. EVD was diagnosed in 1231 of 2178 hospitalized patients (57%) and in 281 of 563 who died in the community (50%). Children aged <15 years had the highest proportion of Ebola virus-malaria parasite coinfections. The case-fatality ratio was high in patients aged <5 years (80%) and those aged >74 years (90%) and low in patients aged 10-19 years (40%). On admission, RT-PCR analysis of blood specimens from patients who died in the hospital yielded a lower median cycle threshold (Ct) than analysis of blood specimens from survivors (18.1 vs 23.2). Individuals who died in the community had a median Ct of 21.5 for throat swabs. Multivariate logistic regression on 1047 data sets revealed that low Ct values, ages of <5 and ≥45 years, and, among children aged 5-14 years, malaria parasite coinfection were independent determinants of a poor EVD outcome. CONCLUSIONS: Virus load, age, and malaria parasite coinfection play a role in the outcome of EVD.


Assuntos
Ebolavirus/isolamento & purificação , Epidemias , Infecções por Filoviridae/diagnóstico , Doença pelo Vírus Ebola/diagnóstico , Malária/complicações , Unidades Móveis de Saúde , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Serviços de Laboratório Clínico , Ebolavirus/genética , Feminino , Filoviridae , Infecções por Filoviridae/complicações , Infecções por Filoviridae/virologia , Guiné , Doença pelo Vírus Ebola/complicações , Doença pelo Vírus Ebola/virologia , Humanos , Lactente , Malária/parasitologia , Masculino , Pessoa de Meia-Idade , RNA Viral/sangue , Carga Viral , Adulto Jovem
7.
Nature ; 533(7601): 100-4, 2016 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-27147028

RESUMO

Despite the magnitude of the Ebola virus disease (EVD) outbreak in West Africa, there is still a fundamental lack of knowledge about the pathophysiology of EVD. In particular, very little is known about human immune responses to Ebola virus. Here we evaluate the physiology of the human T cell immune response in EVD patients at the time of admission to the Ebola Treatment Center in Guinea, and longitudinally until discharge or death. Through the use of multiparametric flow cytometry established by the European Mobile Laboratory in the field, we identify an immune signature that is unique in EVD fatalities. Fatal EVD was characterized by a high percentage of CD4(+) and CD8(+) T cells expressing the inhibitory molecules CTLA-4 and PD-1, which correlated with elevated inflammatory markers and high virus load. Conversely, surviving individuals showed significantly lower expression of CTLA-4 and PD-1 as well as lower inflammation, despite comparable overall T cell activation. Concomitant with virus clearance, survivors mounted a robust Ebola-virus-specific T cell response. Our findings suggest that dysregulation of the T cell response is a key component of EVD pathophysiology.


Assuntos
Ebolavirus/imunologia , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/fisiopatologia , Linfócitos T/imunologia , Antígeno CTLA-4/metabolismo , Feminino , Citometria de Fluxo , Guiné/epidemiologia , Doença pelo Vírus Ebola/mortalidade , Humanos , Mediadores da Inflamação/imunologia , Estudos Longitudinais , Ativação Linfocitária , Masculino , Alta do Paciente , Receptor de Morte Celular Programada 1/metabolismo , Sobreviventes , Linfócitos T/metabolismo , Carga Viral
8.
PLoS Med ; 13(3): e1001980, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27023868

RESUMO

BACKGROUND: Throughout the Ebola virus disease (EVD) epidemic in West Africa, field laboratory testing for EVD has relied on complex, multi-step real-time reverse transcription PCR (RT-PCR) assays; an accurate sample-to-answer RT-PCR test would reduce time to results and potentially increase access to testing. We evaluated the performance of the Cepheid GeneXpert Ebola assay on clinical venipuncture whole blood (WB) and buccal swab (BS) specimens submitted to a field biocontainment laboratory in Sierra Leone for routine EVD testing by RT-PCR ("Trombley assay"). METHODS AND FINDINGS: This study was conducted in the Public Health England EVD diagnostic laboratory in Port Loko, Sierra Leone, using residual diagnostic specimens remaining after clinical testing. EDTA-WB specimens (n = 218) were collected from suspected or confirmed EVD patients between April 1 and July 20, 2015. BS specimens (n = 71) were collected as part of a national postmortem screening program between March 7 and July 20, 2015. EDTA-WB and BS specimens were tested with Xpert (targets: glycoprotein [GP] and nucleoprotein [NP] genes) and Trombley (target: NP gene) assays in parallel. All WB specimens were fresh; 84/218 were tested in duplicate on Xpert to compare WB sampling methods (pipette versus swab); 43/71 BS specimens had been previously frozen. In all, 7/218 (3.2%) WB and 7/71 (9.9%) BS samples had Xpert results that were reported as "invalid" or "error" and were excluded, leaving 211 WB and 64 BS samples with valid Trombley and Xpert results. For WB, 22/22 Trombley-positive samples were Xpert-positive (sensitivity 100%, 95% CI 84.6%-100%), and 181/189 Trombley-negative samples were Xpert-negative (specificity 95.8%, 95% confidence interval (CI) 91.8%-98.2%). Seven of the eight Trombley-negative, Xpert-positive (Xpert cycle threshold [Ct] range 37.7-43.4) WB samples were confirmed to be follow-up submissions from previously Trombley-positive EVD patients, suggesting a revised Xpert specificity of 99.5% (95% CI 97.0%-100%). For Xpert-positive WB samples (n = 22), Xpert NP Ct values were consistently lower than GP Ct values (mean difference -4.06, 95% limits of agreement -6.09, -2.03); Trombley (NP) Ct values closely matched Xpert NP Ct values (mean difference -0.04, 95% limits of agreement -2.93, 2.84). Xpert results (positive/negative) for WB sampled by pipette versus swab were concordant for 78/79 (98.7%) WB samples, with comparable Ct values for positive results. For BS specimens, 20/20 Trombley-positive samples were Xpert-positive (sensitivity 100%, 95% CI 83.2%-100%), and 44/44 Trombley-negative samples were Xpert-negative (specificity 100%, 95% CI 92.0%-100%). This study was limited to testing residual diagnostic samples, some of which had been frozen before use; it was not possible to test the performance of the Xpert Ebola assay at point of care. CONCLUSIONS: The Xpert Ebola assay had excellent performance compared to an established RT-PCR benchmark on WB and BS samples in a field laboratory setting. Future studies should evaluate feasibility and performance outside of a biocontainment laboratory setting to facilitate expanded access to testing.


Assuntos
Ebolavirus/genética , Glicoproteínas/genética , Doença pelo Vírus Ebola/diagnóstico , Nucleoproteínas/genética , RNA Viral/sangue , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Doença pelo Vírus Ebola/sangue , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Sistemas Automatizados de Assistência Junto ao Leito , Sensibilidade e Especificidade , Serra Leoa , Adulto Jovem
9.
Nature ; 530(7589): 228-232, 2016 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-26840485

RESUMO

The Ebola virus disease epidemic in West Africa is the largest on record, responsible for over 28,599 cases and more than 11,299 deaths. Genome sequencing in viral outbreaks is desirable to characterize the infectious agent and determine its evolutionary rate. Genome sequencing also allows the identification of signatures of host adaptation, identification and monitoring of diagnostic targets, and characterization of responses to vaccines and treatments. The Ebola virus (EBOV) genome substitution rate in the Makona strain has been estimated at between 0.87 × 10(-3) and 1.42 × 10(-3) mutations per site per year. This is equivalent to 16-27 mutations in each genome, meaning that sequences diverge rapidly enough to identify distinct sub-lineages during a prolonged epidemic. Genome sequencing provides a high-resolution view of pathogen evolution and is increasingly sought after for outbreak surveillance. Sequence data may be used to guide control measures, but only if the results are generated quickly enough to inform interventions. Genomic surveillance during the epidemic has been sporadic owing to a lack of local sequencing capacity coupled with practical difficulties transporting samples to remote sequencing facilities. To address this problem, here we devise a genomic surveillance system that utilizes a novel nanopore DNA sequencing instrument. In April 2015 this system was transported in standard airline luggage to Guinea and used for real-time genomic surveillance of the ongoing epidemic. We present sequence data and analysis of 142 EBOV samples collected during the period March to October 2015. We were able to generate results less than 24 h after receiving an Ebola-positive sample, with the sequencing process taking as little as 15-60 min. We show that real-time genomic surveillance is possible in resource-limited settings and can be established rapidly to monitor outbreaks.


Assuntos
Ebolavirus/genética , Monitoramento Epidemiológico , Genoma Viral/genética , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/virologia , Análise de Sequência de DNA/instrumentação , Análise de Sequência de DNA/métodos , Aeronaves , Surtos de Doenças/estatística & dados numéricos , Ebolavirus/classificação , Ebolavirus/patogenicidade , Guiné/epidemiologia , Humanos , Mutagênese/genética , Taxa de Mutação , Fatores de Tempo
10.
Clin Infect Dis ; 62(7): 903-905, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26679622

RESUMO

We report 2 cases of Ebola viral disease (EVD) in pregnant women who survived, initially with intact pregnancies. Respectively 31-32 days after negativation of the maternal blood EVD-polymerase chain reaction (PCR) both patients delivered a stillborn fetus with persistent EVD-PCR amniotic fluid positivity.


Assuntos
Doença pelo Vírus Ebola , Complicações Infecciosas na Gravidez , Adulto , Líquido Amniótico/virologia , Feminino , Sangue Fetal/virologia , Humanos , Placenta/virologia , Gravidez , Natimorto , Adulto Jovem
11.
PLoS One ; 10(8): e0136316, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26312485

RESUMO

St. Louis encephalitis virus (SLEV) is a re-emerging arbovirus in South America. In 2005, an encephalitis outbreak caused by SLEV was reported in Argentina. The reason for the outbreak remains unknown, but may have been related to virological factors, changes in vectors populations, avian amplifying hosts, and/or environmental conditions. The main goal of this study was to characterize the complete genome of epidemic and non-epidemic SLEV strains from Argentina. Seventeen amino acid changes were detected; ten were non-conservative and located in proteins E, NS1, NS3 and NS5. Phylogenetic analysis showed two major clades based on geography: the North America and northern Central America (NAnCA) clade and the South America and southern Central America (SAsCA) clade. Interestingly, the presence of SAsCA genotype V SLEV strains in the NAnCA clade was reported in California, Florida and Texas, overlapping with known bird migration flyways. This work represents the first step in understanding the molecular mechanisms underlying virulence and biological variation among SLEV strains.


Assuntos
Doenças Transmissíveis Emergentes/genética , Vírus da Encefalite de St. Louis , Encefalite de St. Louis/genética , Genoma Viral , Filogenia , Proteínas Virais/genética , Animais , Argentina , Chlorocebus aethiops , Doenças Transmissíveis Emergentes/epidemiologia , Vírus da Encefalite de St. Louis/genética , Vírus da Encefalite de St. Louis/patogenicidade , Encefalite de St. Louis/epidemiologia , Genótipo , Humanos , Estados Unidos/epidemiologia , Células Vero
12.
J Gen Virol ; 96(Pt 7): 1890-8, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25724670

RESUMO

HIV prevalence has decreased in Uganda since the 1990s, but remains substantial within high-risk groups. Here, we reconstruct the history and spread of HIV subtypes A1 and D in Uganda and explore the transmission dynamics in high-risk populations. We analysed HIV pol sequences from female sex workers in Kampala (n = 42), Lake Victoria fisher-folk (n = 46) and a rural clinical cohort (n = 74), together with publicly available sequences from adjacent regions in Uganda (n = 412) and newly generated sequences from samples taken in Kampala in 1986 (n = 12). Of the sequences from the three Ugandan populations, 60 (37.1 %) were classified as subtype D, 54 (33.3 %) as subtype A1, 31 (19.1 %) as A1/D recombinants, six (3.7 %) as subtype C, one (0.6 %) as subtype G and 10 (6.2 %) as other recombinants. Among the A1/D recombinants we identified a new candidate circulating recombinant form. Phylodynamic and phylogeographic analyses using BEAST indicated that the Ugandan epidemics originated in 1960 (1950-1968) for subtype A1 and 1973 (1970-1977) for D, in rural south-western Uganda with subsequent spread to Kampala. They also showed extensive interconnection with adjacent countries. The sequence analysis shows both epidemics grew exponentially during the 1970s-1980s and decreased from 1992, which agrees with HIV prevalence reports in Uganda. Inclusion of sequences from the 1980s indicated the origin of both epidemics was more recent than expected and substantially narrowed the confidence intervals in comparison to previous estimates. We identified three transmission clusters and ten pairs, none of them including patients from different populations, suggesting active transmission within a structured transmission network.


Assuntos
Infecções por HIV/transmissão , Infecções por HIV/virologia , HIV-1/classificação , HIV-1/isolamento & purificação , Filogenia , Estudos de Coortes , Feminino , Genótipo , Infecções por HIV/epidemiologia , HIV-1/genética , Humanos , Epidemiologia Molecular , Dados de Sequência Molecular , Análise de Sequência de DNA , Homologia de Sequência , Uganda/epidemiologia , Produtos do Gene pol do Vírus da Imunodeficiência Humana/genética
13.
Int J Infect Dis ; 17(11): e1031-7, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23764351

RESUMO

BACKGROUND: Crimean-Congo hemorrhagic fever (CCHF) is a virulent tick-borne disease reported in more than 30 countries across Europe, Africa, and Asia. The disease is considered endemic in several Central Asian countries, including Tajikistan; however reports of human cases from these regions rarely reach the West. METHODS: We analyzed all historical confirmed cases of CCHF in Tajikistan, mapping these reports against geographic data to assess risk areas. In addition, comprehensive analysis was undertaken on the 2010 human CCHF cohort to demonstrate effective methodologies for diagnosing this disease in-country. RESULTS: These data show that CCHF is endemic in Tajikistan, and several large clusters have been recorded. Endemic foci of disease are localized to the southern region, with geographical factors such as altitude, monthly mean temperature, and monthly mean precipitation levels limiting establishment of tick vectors in other areas. Genomic analysis of viral RNA from a 2010 human case revealed high nucleotide homology (99%) to a strain isolated in Tajikistan in 1990. CONCLUSIONS: CCHF is an important vector-borne and nosocomial pathogen in Tajikistan. The ability to rapidly detect cases using real-time RT-PCR shortly after admission in the hospital setting allows prompt implementation of barrier nursing techniques, therefore reducing onward transmission of the virus.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo/isolamento & purificação , Febre Hemorrágica da Crimeia/virologia , Meio Ambiente , Geografia Médica , Vírus da Febre Hemorrágica da Crimeia-Congo/classificação , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Febre Hemorrágica da Crimeia/epidemiologia , Humanos , RNA Viral , Sorotipagem , Tadjiquistão/epidemiologia
14.
Genome Announc ; 1(3)2013 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-23682136

RESUMO

Crimean-Congo hemorrhagic fever (CCHF) virus is a serious human pathogen causing severe hemorrhagic disease with a fatality rate of up to approximately 30%. We have determined the viral genomic sequence from an isolate that caused a fatal case of imported CCHF in the United Kingdom in October 2012.

15.
Vector Borne Zoonotic Dis ; 12(9): 786-93, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22217175

RESUMO

Crimean-Congo hemorrhagic fever (CCHF) is a virulent tick-borne disease with a case fatality rate ranging from 10-50% for tick-borne transmission, and up to 80% for nosocomial transmission. Human cases have been reported in over 30 countries across Europe, Asia, and Africa. It appears to be spreading to new areas with several countries reporting their first human cases of CCHF disease within the past 10 years. We report a novel real-time RT-PCR assay designed to amplify a conserved region of the CCHF virus S segment. It is capable of detecting strains from all 7 groups of CCHF, including the AP92 strain that until recently represented a lineage of strains that were not associated with human disease. The limit of detection of the assay is 5 copies of target RNA, and the assay shows no cross-reactivity with other viruses from within the same genus, or with viruses causing similar human disease.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo/isolamento & purificação , Febre Hemorrágica da Crimeia/virologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Animais , Sequência de Bases , Chlorocebus aethiops , Primers do DNA/genética , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Humanos , Dados de Sequência Molecular , RNA Viral/genética , RNA Viral/isolamento & purificação , Sensibilidade e Especificidade , Alinhamento de Sequência , Especificidade da Espécie , Células Vero
16.
Antiviral Res ; 90(1): 1-8, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21310183

RESUMO

In murine models of Venezuelan equine encephalitis virus (VEEV) infection, the neutralising monoclonal antibody 1A3B-7 has been shown to be effective in passive protection from challenge by the aerosol route with serogroups I, II and Mucambo virus (formally VEE complex subtype IIIA). This antibody is able to bind to all serogroups of the VEEV complex when used in ELISA and therefore is an excellent candidate for protein engineering in order to derive a humanised molecule suitable for therapeutic use in humans. A Complementarity Determining Region (CDR) grafting approach using human germline IgG frameworks was used to produce a panel of humanised variants of 1A3B-7, from which a single candidate molecule with retained binding specificity was identified. Evaluation of humanised 1A3B-7 (Hu1A3B-7) in in vitro studies indicated that Hu1A3B-7 retained both broad specificity and neutralising activity. Furthermore, in vivo experiments showed that Hu1A3B-7 successfully protected mice against lethal subcutaneous and aerosol challenges with VEEV strain TrD (serogroup I). Hu1A3B-7 is therefore a promising candidate for the future development of a broad-spectrum antiviral therapy to treat VEEV disease in humans.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Anticorpos Neutralizantes/administração & dosagem , Produtos Biológicos/administração & dosagem , Vírus da Encefalite Equina Venezuelana/imunologia , Encefalomielite Equina Venezuelana/prevenção & controle , Imunoterapia/métodos , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Produtos Biológicos/imunologia , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos BALB C
17.
Antiviral Res ; 87(2): 195-203, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20452378

RESUMO

Having recently characterized a CD-1 outbred mouse model of pathogenesis for Western equine encephalitis virus, we examined the possible protective effects of cationic liposome-DNA complexes (CLDCs) against encephalitic arboviral infection. In this investigation, mice were pre-treated, co-treated, or post-treated with CLDC then challenged with a subcutaneous or aerosol dose of the highly virulent WEEV-McMillan strain, lethal in mice 4-5 days after inoculation. Pre-treatment with CLDCs provided a significant protective effect in mice, which was reflected in significantly increased survival rates. Further, in some instances a therapeutic effect of CLDC administration up to 12h after WEEV challenge was observed. Mice treated with CLDC had significantly increased serum IFN-gamma, TNF-alpha, and IL-12, suggesting a strong Th1-biased antiviral activation of the innate immune system. In virus-infected animals, large increases in production of IFN-gamma, TNF-alpha, MCP-1, IL-12, and IL-10 in the brain were observed by 72h after infection, consistent with neuroinvasion and viral replication in the CNS. These results indicate that strong non-specific activation of innate immunity with an immune therapeutic such as CLDC is capable of eliciting significant protective immunity against a rapidly lethal strain of WEEV and suggest a possible prophylactic option for exposed individuals.


Assuntos
DNA/administração & dosagem , Vírus da Encefalite Equina do Oeste/imunologia , Encefalomielite Equina/tratamento farmacológico , Encefalomielite Equina/prevenção & controle , Fatores Imunológicos/administração & dosagem , Imunoterapia/métodos , Lipossomos/administração & dosagem , Animais , Sangue/imunologia , Encéfalo/imunologia , Citocinas/análise , Citocinas/sangue , Modelos Animais de Doenças , Portadores de Fármacos/administração & dosagem , Vírus da Encefalite Equina do Oeste/genética , Encefalomielite Equina/imunologia , Feminino , Camundongos , Análise de Sobrevida
18.
J Gen Virol ; 90(Pt 8): 1848-1858, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19403754

RESUMO

Little is known about viral determinants of virulence associated with western equine encephalitis virus (WEEV). Here, we have analysed six North American WEEV isolates in an outbred CD1 mouse model. Full genome sequence analyses showed < or =2.7 % divergence among the six WEEV isolates. However, the percentage mortality and mean time to death (MTD) varied significantly when mice received subcutaneous injections of 10(3) p.f.u. of each virus. Two WEEV strains, McMillan (McM) and Imperial 181 (IMP), were the most divergent of the six in genome sequence; McM caused 100 % mortality by 5 days post-infection, whereas IMP caused no mortality. McM had significantly higher titres in the brain than IMP. Similar differences in virulence were observed when McM and IMP were administered by aerosol, intranasal or intravenous routes. McM was 100 % lethal with an MTD of 1.9 days when 10(3) p.f.u. of each virus was administered by intracerebral inoculation; in contrast, IMP caused no mortality. The presence of IMP in the brains after infection by different routes and the lack of observed mortality confirmed that IMP is neuroinvasive but not neurovirulent. Based on morbidity, mortality, MTD, severity of brain lesions, virus distribution patterns, routes of infection and differences in infection of cultured cells, McM and IMP were identified as high- and low-virulence isolates, respectively.


Assuntos
Vírus da Encefalite Equina do Oeste/isolamento & purificação , Vírus da Encefalite Equina do Oeste/patogenicidade , Encefalomielite Equina/virologia , Variação Genética , Animais , Encéfalo/patologia , Encéfalo/virologia , Análise por Conglomerados , Vírus da Encefalite Equina do Oeste/genética , Genoma Viral , Histocitoquímica/métodos , Camundongos , Dados de Sequência Molecular , Filogenia , RNA Viral/genética , Análise de Sequência de DNA , Homologia de Sequência , Análise de Sobrevida , Ensaio de Placa Viral/métodos , Virulência
19.
Virus Genes ; 36(2): 313-21, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18264748

RESUMO

An investigation of the role of the 5' untranslated region (UTR) of Semliki Forest virus (SFV) in determining pathogenicity in infected mice was carried out by constructing 5' UTR chimeras. Analysis of 5' UTR sequences showed nucleotide differences between virulent and avirulent strains at positions 21, 35 and 42. Reciprocal chimeras incorporating these changes were constructed from avirulent CA7 and rA7[74], and virulent SFV-4 virus, derived from infectious clones, and avirulent A7 and A7[74] plaque-purified stock virus. Survival rates and neuropathology in intranasally (i.n.) infected mice were analysed. While no statistically significant difference between rates of RNA synthesis was detected between strains in cell culture, an increase in survival of infected mice and a reduction in the severity of brain lesions was observed on substitution of the 5' UTR from a stock avirulent virus into an infectious clone where the remainder of the genome was derived from avirulent virus. However, substitution of a 5' UTR from an avirulent stock virus into an infectious clone where the remainder of the genome was from virulent virus did not affect virulence. These results and other studies suggest that control of virulence is polygenic, and that the SFV 5' UTR acts as a pathogenicity determinant in synergy with other determinants in the genome.


Assuntos
Regiões 5' não Traduzidas , Infecções por Alphavirus/virologia , Encefalopatias/virologia , Viroses do Sistema Nervoso Central/virologia , Vírus da Floresta de Semliki/genética , Vírus da Floresta de Semliki/patogenicidade , Infecções por Alphavirus/mortalidade , Infecções por Alphavirus/patologia , Animais , Sequência de Bases , Encéfalo/patologia , Encéfalo/virologia , Encefalopatias/patologia , Linhagem Celular , Viroses do Sistema Nervoso Central/patologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Alinhamento de Sequência , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA