Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Chem Commun (Camb) ; 59(85): 12707-12710, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37801331

RESUMO

The production of ß-lactamases by bacterial pathogens endangers antimicrobial therapy, and new inhibitors for ß-lactamases are urgently needed. We report the development of a luminescent-based biosensor that quantifies ß-lactamase inhibition in a cellular context, based on the activation of transcriptional factor AmpR following the exposure of bacterial cells to ß-lactams. This rapid method can account for factors like membrane permeability and can be employed to identify new ß-lactamase inhibitors.


Assuntos
Antibacterianos , Inibidores de beta-Lactamases , Inibidores de beta-Lactamases/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , beta-Lactamas/farmacologia , beta-Lactamases , Bactérias
3.
Proc Natl Acad Sci U S A ; 119(18): e2117310119, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35486701

RESUMO

ß-Lactams are the most important class of antibacterials, but their use is increasingly compromised by resistance, most importantly via serine ß-lactamase (SBL)-catalyzed hydrolysis. The scope of ß-lactam antibacterial activity can be substantially extended by coadministration with a penicillin-derived SBL inhibitor (SBLi), i.e., the penam sulfones tazobactam and sulbactam, which are mechanism-based inhibitors working by acylation of the nucleophilic serine. The new SBLi enmetazobactam, an N-methylated tazobactam derivative, has recently completed clinical trials. Biophysical studies on the mechanism of SBL inhibition by enmetazobactam reveal that it inhibits representatives of all SBL classes without undergoing substantial scaffold fragmentation, a finding that contrasts with previous reports on SBL inhibition by tazobactam and sulbactam. We therefore reinvestigated the mechanisms of tazobactam and sulbactam using mass spectrometry under denaturing and nondenaturing conditions, X-ray crystallography, and NMR spectroscopy. The results imply that the reported extensive fragmentation of penam sulfone­derived acyl­enzyme complexes does not substantially contribute to SBL inhibition. In addition to observation of previously identified inhibitor-induced SBL modifications, the results reveal that prolonged reaction of penam sulfones with SBLs can induce dehydration of the nucleophilic serine to give a dehydroalanine residue that undergoes reaction to give a previously unobserved lysinoalanine cross-link. The results clarify the mechanisms of action of widely clinically used SBLi, reveal limitations on the interpretation of mass spectrometry studies concerning mechanisms of SBLi, and will inform the development of new SBLi working by reaction to form hydrolytically stable acyl­enzyme complexes.


Assuntos
Compostos Azabicíclicos , Inibidores de beta-Lactamases , Penicilinas , Sulfonas , Triazóis , Inibidores de beta-Lactamases/química , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/química
4.
RSC Med Chem ; 12(10): 1623-1639, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34778765

RESUMO

The ß-lactams are the most widely used antibacterial agents worldwide. These antibiotics, a group that includes the penicillins and cephalosporins, are covalent inhibitors that target bacterial penicillin-binding proteins and disrupt peptidoglycan synthesis. Bacteria can achieve resistance to ß-lactams in several ways, including the production of serine ß-lactamase enzymes. While ß-lactams also covalently interact with serine ß-lactamases, these enzymes are capable of deacylating this complex, treating the antibiotic as a substrate. In this tutorial-style review, we provide an overview of the ß-lactam antibiotics, focusing on their covalent interactions with their target proteins and resistance mechanisms. We begin by describing the structurally diverse range of ß-lactam antibiotics and ß-lactamase inhibitors that are currently used as therapeutics. Then, we introduce the penicillin-binding proteins, describing their functions and structures, and highlighting their interactions with ß-lactam antibiotics. We next describe the classes of serine ß-lactamases, exploring some of the mechanisms by which they achieve the ability to degrade ß-lactams. Finally, we introduce the l,d-transpeptidases, a group of bacterial enzymes involved in peptidoglycan synthesis which are also targeted by ß-lactam antibiotics. Although resistance mechanisms are now prevalent for all antibiotics in this class, past successes in antibiotic development have at least delayed this onset of resistance. The ß-lactams continue to be an essential tool for the treatment of infectious disease, and recent advances (e.g., ß-lactamase inhibitor development) will continue to support their future use.

5.
Eur J Med Chem ; 215: 113257, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33618159

RESUMO

Penems have demonstrated potential as antibacterials and ß-lactamase inhibitors; however, their clinical use has been limited, especially in comparison with the structurally related carbapenems. Faropenem is an orally active antibiotic with a C-2 tetrahydrofuran (THF) ring, which is resistant to hydrolysis by some ß-lactamases. We report studies on the reactions of faropenem with carbapenem-hydrolysing ß-lactamases, focusing on the class A serine ß-lactamase KPC-2 and the metallo ß-lactamases (MBLs) VIM-2 (a subclass B1 MBL) and L1 (a B3 MBL). Kinetic studies show that faropenem is a substrate for all three ß-lactamases, though it is less efficiently hydrolysed by KPC-2. Crystallographic analyses on faropenem-derived complexes reveal opening of the ß-lactam ring with formation of an imine with KPC-2, VIM-2, and L1. In the cases of the KPC-2 and VIM-2 structures, the THF ring is opened to give an alkene, but with L1 the THF ring remains intact. Solution state studies, employing NMR, were performed on L1, KPC-2, VIM-2, VIM-1, NDM-1, OXA-23, OXA-10, and OXA-48. The solution results reveal, in all cases, formation of imine products in which the THF ring is opened; formation of a THF ring-closed imine product was only observed with VIM-1 and VIM-2. An enamine product with a closed THF ring was also observed in all cases, at varying levels. Combined with previous reports, the results exemplify the potential for different outcomes in the reactions of penems with MBLs and SBLs and imply further structure-activity relationship studies are worthwhile to optimise the interactions of penems with ß-lactamases. They also exemplify how crystal structures of ß-lactamase substrate/inhibitor complexes do not always reflect reaction outcomes in solution.


Assuntos
Antibacterianos/química , Inibidores de beta-Lactamases/química , beta-Lactamases/química , beta-Lactamas/química , Antibacterianos/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Hidrólise , Klebsiella pneumoniae/enzimologia , Ligação Proteica , Pseudomonas aeruginosa/enzimologia , Stenotrophomonas maltophilia/enzimologia , Inibidores de beta-Lactamases/metabolismo , beta-Lactamases/metabolismo , beta-Lactamas/metabolismo
6.
J Biol Chem ; 295(49): 16545-16561, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-32934009

RESUMO

In animals, the response to chronic hypoxia is mediated by prolyl hydroxylases (PHDs) that regulate the levels of hypoxia-inducible transcription factor α (HIFα). PHD homologues exist in other types of eukaryotes and prokaryotes where they act on non HIF substrates. To gain insight into the factors underlying different PHD substrates and properties, we carried out biochemical and biophysical studies on PHD homologues from the cellular slime mold, Dictyostelium discoideum, and the protozoan parasite, Toxoplasma gondii, both lacking HIF. The respective prolyl-hydroxylases (DdPhyA and TgPhyA) catalyze prolyl-hydroxylation of S-phase kinase-associated protein 1 (Skp1), a reaction enabling adaptation to different dioxygen availability. Assays with full-length Skp1 substrates reveal substantial differences in the kinetic properties of DdPhyA and TgPhyA, both with respect to each other and compared with human PHD2; consistent with cellular studies, TgPhyA is more active at low dioxygen concentrations than DdPhyA. TgSkp1 is a DdPhyA substrate and DdSkp1 is a TgPhyA substrate. No cross-reactivity was detected between DdPhyA/TgPhyA substrates and human PHD2. The human Skp1 E147P variant is a DdPhyA and TgPhyA substrate, suggesting some retention of ancestral interactions. Crystallographic analysis of DdPhyA enables comparisons with homologues from humans, Trichoplax adhaerens, and prokaryotes, informing on differences in mobile elements involved in substrate binding and catalysis. In DdPhyA, two mobile loops that enclose substrates in the PHDs are conserved, but the C-terminal helix of the PHDs is strikingly absent. The combined results support the proposal that PHD homologues have evolved kinetic and structural features suited to their specific sensing roles.


Assuntos
Dictyostelium/enzimologia , Prolil Hidroxilases/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/enzimologia , Sequência de Aminoácidos , Animais , Sítios de Ligação , Biocatálise , Cristalografia por Raios X , Humanos , Hidroxilação , Subunidade alfa do Fator 1 Induzível por Hipóxia/química , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Cinética , Simulação de Dinâmica Molecular , Oxigênio/metabolismo , Prolil Hidroxilases/química , Prolil Hidroxilases/genética , Estrutura Terciária de Proteína , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Quinases Associadas a Fase S/química , Proteínas Quinases Associadas a Fase S/metabolismo , Alinhamento de Sequência , Especificidade por Substrato
7.
J Biol Chem ; 295(49): 16604-16613, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-32963107

RESUMO

An important mechanism of resistance to ß-lactam antibiotics is via their ß-lactamase-catalyzed hydrolysis. Recent work has shown that, in addition to the established hydrolysis products, the reaction of the class D nucleophilic serine ß-lactamases (SBLs) with carbapenems also produces ß-lactones. We report studies on the factors determining ß-lactone formation by class D SBLs. We show that variations in hydrophobic residues at the active site of class D SBLs (i.e. Trp105, Val120, and Leu158, using OXA-48 numbering) impact on the relative levels of ß-lactones and hydrolysis products formed. Some variants, i.e. the OXA-48 V120L and OXA-23 V128L variants, catalyze increased ß-lactone formation compared with the WT enzymes. The results of kinetic and product studies reveal that variations of residues other than those directly involved in catalysis, including those arising from clinically observed mutations, can alter the reaction outcome of class D SBL catalysis. NMR studies show that some class D SBL variants catalyze formation of ß-lactones from all clinically relevant carbapenems regardless of the presence or absence of a 1ß-methyl substituent. Analysis of reported crystal structures for carbapenem-derived acyl-enzyme complexes reveals preferred conformations for hydrolysis and ß-lactone formation. The observation of increased ß-lactone formation by class D SBL variants, including the clinically observed carbapenemase OXA-48 V120L, supports the proposal that class D SBL-catalyzed rearrangement of ß-lactams to ß-lactones is important as a resistance mechanism.


Assuntos
Proteínas de Bactérias/metabolismo , Lactonas/metabolismo , beta-Lactamases/metabolismo , Acinetobacter baumannii/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Resistência Microbiana a Medicamentos , Hidrólise , Cinética , Lactonas/química , Espectroscopia de Ressonância Magnética , Mutagênese Sítio-Dirigida , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , beta-Lactamases/química , beta-Lactamases/genética
8.
Eur J Med Chem ; 194: 112262, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32248005

RESUMO

The enzymes involved in bacterial cell wall synthesis are established antibiotic targets, and continue to be a central focus for antibiotic development. Bacterial penicillin-binding proteins (and, in some bacteria, l,d-transpeptidases) form essential peptide cross-links in the cell wall. Although the ß-lactam class of antibiotics target these enzymes, bacterial resistance threatens their clinical use, and there is an urgent unmet need for new antibiotics. However, the search for new antibiotics targeting the bacterial cell wall is hindered by a number of obstacles associated with screening the enzymes involved in peptidoglycan synthesis. This review describes recent approaches for measuring the activity and inhibition of penicillin-binding proteins and l,d-transpeptidases, highlighting strategies that are poised to serve as valuable tools for high-throughput screening of transpeptidase inhibitors, supporting the development of new antibiotics.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Descoberta de Drogas , Peptidil Transferases/antagonistas & inibidores , Antibacterianos/química , Bactérias/metabolismo , Parede Celular/metabolismo , Testes de Sensibilidade Microbiana , Estrutura Molecular , Proteínas de Ligação às Penicilinas/antagonistas & inibidores , Proteínas de Ligação às Penicilinas/metabolismo , Peptidil Transferases/metabolismo
9.
Chembiochem ; 21(3): 368-372, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31322798

RESUMO

Mycobacterium tuberculosis l,d-transpeptidases (Ldts), which are involved in cell-wall biosynthesis, have emerged as promising targets for the treatment of tuberculosis. However, an efficient method for testing inhibition of these enzymes is not currently available. We present a fluorescence-based assay for LdtMt2 , which is suitable for high-throughput screening. Two fluorogenic probes were identified that release a fluorophore upon reaction with LdtMt2 , thus making it possible to assess the availability of the catalytic site in the presence of inhibitors. The assay was applied to a panel of ß-lactam antibiotics and related inhibitors; the results validate observations that the (carba)penem subclass of ß-lactams are more potent Ldt inhibitors than other ß-lactam classes, though unexpected variations in potency were observed. The method will enable systematic structure-activity relationship studies on Ldts, thereby facilitating the identification of new antibiotics active against M. tuberculosis.


Assuntos
Antibacterianos/farmacologia , Inibidores Enzimáticos/farmacologia , Corantes Fluorescentes/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Peptidil Transferases/antagonistas & inibidores , beta-Lactamas/farmacologia , Antibacterianos/química , Inibidores Enzimáticos/química , Fluorescência , Corantes Fluorescentes/química , Ensaios de Triagem em Larga Escala , Testes de Sensibilidade Microbiana , Estrutura Molecular , Mycobacterium tuberculosis/metabolismo , Peptidil Transferases/metabolismo , beta-Lactamas/química
10.
ChemMedChem ; 15(3): 270-273, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31751494

RESUMO

The 2-oxoglutarate-dependent hypoxia inducible factor prolyl hydroxylases (PHDs) are targets for treatment of a variety of diseases including anaemia. One PHD inhibitor is approved for use for the treatment of renal anaemia and others are in late stage clinical trials. The number of reported templates for PHD inhibition is limited. We report structure-activity relationship and crystallographic studies on a promising class of 4-hydroxypyrimidine-containing PHD inhibitors.


Assuntos
Prolina Dioxigenases do Fator Induzível por Hipóxia/antagonistas & inibidores , Inibidores de Prolil-Hidrolase/farmacologia , Pirimidinonas/farmacologia , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Humanos , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Modelos Moleculares , Estrutura Molecular , Inibidores de Prolil-Hidrolase/química , Pirimidinonas/química , Relação Estrutura-Atividade
11.
Sci Rep ; 9(1): 13608, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31541180

RESUMO

ß-Lactamases are a major threat to the clinical use of carbapenems, which are often antibiotics of last resort. Despite this, the reaction outcomes and mechanisms by which ß-lactamases degrade carbapenems are still not fully understood. The carbapenem bicyclic core consists of a ß-lactam ring fused to a pyrroline ring. Following ß-lactamase-mediated opening of the ß-lactam, the pyrroline may interconvert between an enamine (2-pyrroline) form and two epimeric imine (1-pyrroline) forms; previous crystallographic and spectroscopic studies have reported all three of these forms in the contexts of hydrolysis by different ß-lactamases. As we show by NMR spectroscopy, the serine ß-lactamases (KPC-2, SFC-1, CMY-10, OXA-23, and OXA-48) and metallo-ß-lactamases (NDM-1, VIM-1, BcII, CphA, and L1) tested all degrade carbapenems to preferentially give the Δ2 (enamine) and/or (R)-Δ1 (imine) products. Rapid non-enzymatic tautomerisation of the Δ2 product to the (R)-Δ1 product prevents assignment of the nascent enzymatic product by NMR. The observed stereoselectivity implies that carbapenemases control the form of their pyrroline ring intermediate(s)/product(s), thereby preventing pyrroline tautomerisation from inhibiting catalysis.

12.
Chem Commun (Camb) ; 55(69): 10214-10217, 2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31380528

RESUMO

The l,d-transpeptidases (Ldts) are promising antibiotic targets for treating tuberculosis. We report screening of cysteine-reactive inhibitors against LdtMt2 from Mycobacterium tuberculosis. Structural studies on LdtMt2 with potent inhibitor ebselen reveal opening of the benzisoselenazolone ring by a nucleophilic cysteine, forming a complex involving extensive hydrophobic interactions with a substrate-binding loop.


Assuntos
Azóis/química , Azóis/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Mycobacterium tuberculosis/enzimologia , Compostos Organosselênicos/química , Compostos Organosselênicos/farmacologia , Peptidil Transferases/antagonistas & inibidores , Antituberculosos/química , Antituberculosos/farmacologia , Derivados de Benzeno/química , Derivados de Benzeno/farmacologia , Cisteína/metabolismo , Humanos , Isoindóis , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Peptidil Transferases/metabolismo , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia
13.
J Biol Chem ; 294(37): 13629-13637, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31320474

RESUMO

The Mag1 and Tpa1 proteins from budding yeast (Saccharomyces cerevisiae) have both been reported to repair alkylation damage in DNA. Mag1 initiates the base excision repair pathway by removing alkylated bases from DNA, and Tpa1 has been proposed to directly repair alkylated bases as does the prototypical oxidative dealkylase AlkB from Escherichia coli However, we found that in vivo repair of methyl methanesulfonate (MMS)-induced alkylation damage in DNA involves Mag1 but not Tpa1. We observed that yeast strains without tpa1 are no more sensitive to MMS than WT yeast, whereas mag1-deficient yeast are ∼500-fold more sensitive to MMS. We therefore investigated the substrate specificity of Mag1 and found that it excises alkylated bases that are known AlkB substrates. In contrast, purified recombinant Tpa1 did not repair these alkylated DNA substrates, but it did exhibit the prolyl hydroxylase activity that has also been ascribed to it. A comparison of several of the kinetic parameters of Mag1 and its E. coli homolog AlkA revealed that Mag1 catalyzes base excision from known AlkB substrates with greater efficiency than does AlkA, consistent with an expanded role of yeast Mag1 in repair of alkylation damage. Our results challenge the proposal that Tpa1 directly functions in DNA repair and suggest that Mag1-initiated base excision repair compensates for the absence of oxidative dealkylation of alkylated nucleobases in budding yeast. This expanded role of Mag1, as compared with alkylation repair glycosylases in other organisms, could explain the extreme sensitivity of Mag1-deficient S. cerevisiae toward alkylation damage.


Assuntos
Proteínas de Transporte/metabolismo , DNA Glicosilases/metabolismo , Reparo do DNA/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alquilantes , Alquilação/genética , Proteínas de Transporte/genética , Dano ao DNA/efeitos dos fármacos , DNA Glicosilases/genética , DNA Fúngico/metabolismo , Remoção de Radical Alquila/genética , Endodesoxirribonucleases/genética , Escherichia coli/metabolismo , Metanossulfonato de Metila/farmacologia , Mutagênicos/farmacologia , Mutação , Estresse Oxidativo/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomycetales/genética , Especificidade por Substrato
14.
Chemistry ; 25(51): 11837-11841, 2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31310409

RESUMO

Bacterial production of ß-lactamases with carbapenemase activity is a global health threat. The active sites of class D carbapenemases such as OXA-48, which is of major clinical importance, uniquely contain a carbamylated lysine residue which is essential for catalysis. Although there is significant interest in characterizing this post-translational modification, and it is a promising inhibition target, protein carbamylation is challenging to monitor in solution. We report the use of 19 F NMR spectroscopy to monitor the carbamylation state of 19 F-labelled OXA-48. This method was used to investigate the interactions of OXA-48 with clinically used serine ß-lactamase inhibitors, including avibactam and vaborbactam. Crystallographic studies on 19 F-labelled OXA-48 provide a structural rationale for the sensitivity of the 19 F label to active site interactions. The overall results demonstrate the use of 19 F NMR to monitor reversible covalent post-translational modifications.


Assuntos
Compostos Azabicíclicos/química , Proteínas de Bactérias/química , Radioisótopos de Flúor/química , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/farmacologia , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Espectroscopia de Ressonância Magnética , Carbamilação de Proteínas , Processamento de Proteína Pós-Traducional , Inibidores de beta-Lactamases/química , beta-Lactamases/química , beta-Lactamases/metabolismo
15.
Biochim Biophys Acta Gen Subj ; 1863(4): 742-748, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30738906

RESUMO

BACKGROUND: The ß-lactam antibiotics represent the most successful drug class for treatment of bacterial infections. Resistance to them, importantly via production of ß-lactamases, which collectively are able to hydrolyse all classes of ß-lactams, threatens their continued widespread use. Bicyclic boronates show potential as broad spectrum inhibitors of the mechanistically distinct serine- (SBL) and metallo- (MBL) ß-lactamase families. METHODS: Using biophysical methods, including crystallographic analysis, we have investigated the binding mode of bicyclic boronates to clinically important ß-lactamases. Induction experiments and agar-based MIC screening against MDR-Enterobacteriaceae (n = 132) were used to evaluate induction properties and the in vitro efficacy of a bicyclic boronate in combination with meropenem. RESULTS: Crystallographic analysis of a bicyclic boronate in complex with AmpC from Pseudomonas aeruginosa reveals it binds to form a tetrahedral boronate species. Microbiological studies on the clinical coverage (in combination with meropenem) and induction of ß-lactamases by bicyclic boronates further support the promise of such compounds as broad spectrum ß-lactamase inhibitors. CONCLUSIONS: Together with reported studies on the structural basis of their inhibition of class A, B and D ß-lactamases, biophysical studies, including crystallographic analysis, support the proposal that bicyclic boronates mimic tetrahedral intermediates common to SBL and MBL catalysis. GENERAL SIGNIFICANCE: Bicyclic boronates are a new generation of broad spectrum inhibitors of both SBLs and MBLs.


Assuntos
Antibacterianos/farmacologia , Ácidos Borônicos/farmacologia , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/metabolismo , Antibacterianos/química , Ácidos Borônicos/química , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular , Pseudomonas aeruginosa/enzimologia , Inibidores de beta-Lactamases/química
16.
Bioorg Med Chem ; 27(12): 2405-2412, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-30737136

RESUMO

The hydroxylation of prolyl-residues in eukaryotes is important in collagen biosynthesis and in hypoxic signalling. The hypoxia inducible factor (HIF) prolyl hydroxylases (PHDs) are drug targets for the treatment of anaemia, while the procollagen prolyl hydroxylases and other 2-oxoglutarate dependent oxygenases are potential therapeutic targets for treatment of cancer, fibrotic disease, and infection. We describe assay development and inhibition studies for a procollagen prolyl hydroxylase from Paramecium bursaria chlorella virus 1 (vCPH). The results reveal HIF PHD inhibitors in clinical trials also inhibit vCPH. Implications for the targeting of the human PHDs and microbial prolyl hydroxylases are discussed.


Assuntos
Pró-Colágeno-Prolina Dioxigenase/química , Inibidores de Prolil-Hidrolase/química , Ensaios Enzimáticos , Hidroxilação , Prolina Dioxigenases do Fator Induzível por Hipóxia/química , Ácidos Cetoglutáricos/química , Oligopeptídeos/química , Phycodnaviridae/enzimologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
17.
Chemistry ; 25(8): 2019-2024, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30427558

RESUMO

Human prolyl hydroxylases are involved in the modification of transcription factors, procollagen, and ribosomal proteins, and are current medicinal chemistry targets. To date, there are few reports on inhibitors selective for the different types of prolyl hydroxylases. We report a structurally informed template-based strategy for the development of inhibitors selective for the human ribosomal prolyl hydroxylase OGFOD1. These inhibitors did not target the other human oxygenases tested, including the structurally similar hypoxia-inducible transcription factor prolyl hydroxylase, PHD2.


Assuntos
Prolil Hidroxilases , Inibidores de Prolil-Hidrolase , Ribossomos/efeitos dos fármacos , Proteínas de Transporte/antagonistas & inibidores , Desenho de Fármacos , Humanos , Proteínas Nucleares/antagonistas & inibidores , Prolil Hidroxilases/metabolismo , Inibidores de Prolil-Hidrolase/química , Inibidores de Prolil-Hidrolase/metabolismo , Inibidores de Prolil-Hidrolase/farmacologia , Ribossomos/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato
18.
Angew Chem Int Ed Engl ; 58(7): 1990-1994, 2019 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-30569575

RESUMO

Enzymes often use nucleophilic serine, threonine, and cysteine residues to achieve the same type of reaction; the underlying reasons for this are not understood. While bacterial d,d-transpeptidases (penicillin-binding proteins) employ a nucleophilic serine, l,d-transpeptidases use a nucleophilic cysteine. The covalent complexes formed by l,d-transpeptidases with some ß-lactam antibiotics undergo non-hydrolytic fragmentation. This is not usually observed for penicillin-binding proteins, or for the related serine ß-lactamases. Replacement of the nucleophilic serine of serine ß-lactamases with cysteine yields enzymes which fragment ß-lactams via a similar mechanism as the l,d-transpeptidases, implying the different reaction outcomes are principally due to the formation of thioester versus ester intermediates. The results highlight fundamental differences in the reactivity of nucleophilic serine and cysteine enzymes, and imply new possibilities for the inhibition of nucleophilic enzymes.


Assuntos
Antibacterianos/metabolismo , Cisteína/metabolismo , Peptidil Transferases/metabolismo , beta-Lactamases/metabolismo , beta-Lactamas/metabolismo , Antibacterianos/química , Cisteína/química , Conformação Molecular , Peptidil Transferases/química , beta-Lactamases/química , beta-Lactamas/química
19.
Nat Prod Rep ; 35(8): 735-756, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29808887

RESUMO

Covering: up to 2017 2-Oxoglutarate (2OG) dependent oxygenases and the homologous oxidase isopenicillin N synthase (IPNS) play crucial roles in the biosynthesis of ß-lactam ring containing natural products. IPNS catalyses formation of the bicyclic penicillin nucleus from a tripeptide. 2OG oxygenases catalyse reactions that diversify the chemistry of ß-lactams formed by both IPNS and non-oxidative enzymes. Reactions catalysed by the 2OG oxygenases of ß-lactam biosynthesis not only involve their typical hydroxylation reactions, but also desaturation, epimerisation, rearrangement, and ring-forming reactions. Some of the enzymes involved in ß-lactam biosynthesis exhibit remarkable substrate and product selectivities. We review the roles of 2OG oxygenases and IPNS in ß-lactam biosynthesis, highlighting opportunities for application of knowledge of their roles, structures, and mechanisms.


Assuntos
Oxigenases de Função Mista/metabolismo , Oxirredutases/metabolismo , beta-Lactamas/metabolismo , Carbapenêmicos/biossíntese , Cefalosporinas/biossíntese , Ácidos Cetoglutáricos/metabolismo , Oxigenases de Função Mista/química , Oxigenases/metabolismo , beta-Lactamas/química
20.
Angew Chem Int Ed Engl ; 57(5): 1282-1285, 2018 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-29236332

RESUMO

ß-Lactamases threaten the clinical use of carbapenems, which are considered antibiotics of last resort. The classical mechanism of serine carbapenemase catalysis proceeds through hydrolysis of an acyl-enzyme intermediate. We show that class D ß-lactamases also degrade clinically used 1ß-methyl-substituted carbapenems through the unprecedented formation of a carbapenem-derived ß-lactone. ß-Lactone formation results from nucleophilic attack of the carbapenem hydroxyethyl side chain on the ester carbonyl of the acyl-enzyme intermediate. The carbapenem-derived lactone products inhibit both serine ß-lactamases (particularly class D) and metallo-ß-lactamases. These results define a new mechanism for the class D carbapenemases, in which a hydrolytic water molecule is not required.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA