Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Innate Immun ; 16(1): 143-158, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38310854

RESUMO

BACKGROUND: Upon infection, mucosal tissues activate a brisk inflammatory response to clear the pathogen, i.e., resistance to disease. Resistance to disease is orchestrated by tissue-resident macrophages, which undergo profound metabolic reprogramming after sensing the pathogen. These metabolically activated macrophages release many inflammatory factors, which promote their bactericidal function. However, in immunocompetent individuals, pathogens like Pseudomonas aeruginosa, Staphylococcus aureus, and Salmonella evade this type of immunity, generating communities that thrive for the long term. SUMMARY: These organisms develop features that render them less susceptible to eradication, such as biofilms and increased tolerance to antibiotics. Furthermore, after antibiotic therapy withdrawal, "persister" cells rapidly upsurge, triggering inflammatory relapses that worsen host health. How these pathogens persisted in inflamed tissues replete with activated macrophages remains poorly understood. KEY MESSAGES: In this review, we discuss recent findings indicating that the ability of P. aeruginosa, S. aureus, and Salmonella to evolve biofilms and antibiotic tolerance is promoted by the similar metabolic routes that regulate macrophage metabolic reprogramming.


Assuntos
Antibacterianos , Biofilmes , Macrófagos , Biofilmes/efeitos dos fármacos , Humanos , Animais , Macrófagos/imunologia , Macrófagos/microbiologia , Antibacterianos/farmacologia , Infecções Bacterianas/imunologia , Pseudomonas aeruginosa/imunologia , Pseudomonas aeruginosa/fisiologia , Staphylococcus aureus/imunologia , Staphylococcus aureus/fisiologia , Farmacorresistência Bacteriana , Evasão da Resposta Imune
2.
PLoS Pathog ; 19(10): e1011731, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37871034

RESUMO

Cholesterol derived from the host milieu forms a critical factor for mycobacterial pathogenesis. However, the molecular circuitry co-opted by Mycobacterium tuberculosis (Mtb) to accumulate cholesterol in host cells remains obscure. Here, we report that the coordinated action of WNT-responsive histone modifiers G9a (H3K9 methyltransferase) and SIRT6 (H3K9 deacetylase) orchestrate cholesterol build-up in in vitro and in vivo mouse models of Mtb infection. Mechanistically, G9a, along with SREBP2, drives the expression of cholesterol biosynthesis and uptake genes; while SIRT6 along with G9a represses the genes involved in cholesterol efflux. The accumulated cholesterol in Mtb infected macrophages promotes the expression of antioxidant genes leading to reduced oxidative stress, thereby supporting Mtb survival. In corroboration, loss-of-function of G9a in vitro and pharmacological inhibition in vivo; or utilization of BMDMs derived from Sirt6-/- mice or in vivo infection in haplo-insufficient Sirt6-/+ mice; hampered host cholesterol accumulation and restricted Mtb burden. These findings shed light on the novel roles of G9a and SIRT6 during Mtb infection and highlight the previously unknown contribution of host cholesterol in potentiating anti-oxidative responses for aiding Mtb survival.


Assuntos
Histona-Lisina N-Metiltransferase , Mycobacterium tuberculosis , Sirtuínas , Animais , Camundongos , Colesterol/metabolismo , Histonas/metabolismo , Macrófagos/metabolismo , Mycobacterium tuberculosis/metabolismo , Sirtuínas/genética , Sirtuínas/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo
3.
Autophagy ; 18(2): 391-408, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34074211

RESUMO

Mycobacterium tuberculosis (Mtb)-driven lipid accumulation is intricately associated with the progression of tuberculosis (TB) disease. Although several studies elucidating the mechanisms for lipid droplet (LD) biosynthesis exist, we provide evidence for the significance of their regulated turnover via macroautophagy/autophagy during Mtb infection. We demonstrate that Mtb utilizes EGFR (epidermal growth factor receptor) signaling to induce the expression of the histone acetylation reader, BRD4 (bromodomain containing 4). The EGFR-BRD4 axis suppresses lipid-specific autophagy, and hence favors cellular lipid accumulation. Specifically, we found that pharmacological inhibition or knockdown of Egfr or Brd4 enhances autophagic flux and concomitantly decreases cellular LDs that is otherwise maintained at a significant level in chloroquine-treated or Atg5 knocked down autophagy-compromised host cells. In line with the enhanced lipophagy, we found that loss of EGFR or BRD4 function restricts mycobacterial burden that is rescued by external replenishment with oleic acid. We also report that the EGFR-BRD4 axis exerts additional effects by modulating pro-angiogenic gene expression and consequently aberrant angiogenesis during mycobacterial infection. This is important in the context of systemic Mtb dissemination as well as for the efficient delivery of anti-mycobacterial therapeutics to the Mtb-rich core of TB granuloma. Finally, utilizing an in vivo mouse model of TB, we show that pharmacological inhibition of EGFR and BRD4 compromises LD buildup via enhanced lipophagy and normalizes angiogenesis, thereby restricting Mtb burden and rescuing mice from severe TB-like pathology. These findings shed light on the novel roles of BRD4 during Mtb infection, and its possible implication in potentiating anti-TB responses.Abbreviations: ATG5: autophagy related 5; BRDs: bromodomain containing; COL18A1: collagen type XVIII alpha 1 chain; EGFR: epidermal growth factor receptor; EP300: E1A binding protein p300; KDR: kinase insert domain receptor; KLF5: Kruppel like factor 5; LDs: lipid droplets; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; Mtb: Mycobacterium tuberculosis; PECAM1: platelet and endothelial cell adhesion molecule 1; SQSTM1/p62: sequestosome 1; TB: tuberculosis; THBS1: thrombospondin 1; VEGF: vascular endothelial growth factor.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Autofagia/fisiologia , Epigênese Genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Lipídeos/farmacologia , Camundongos , Mycobacterium tuberculosis/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Tuberculose/microbiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
4.
FEBS J ; 289(6): 1536-1551, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34670010

RESUMO

Active tuberculosis patients are at high risk of coinfection with opportunistic fungal pathogen Candida albicans. However, the molecular mechanisms that orchestrate pathogenesis of Mycobacterium tuberculosis (Mtb)-C. albicans coinfection remain elusive. In the current study, we utilize a mouse model to demonstrate that Mtb promotes a macrophage environment that is conducive for C. albicans survival. Mtb-dependent protein kinase Cζ-WNT signalling axis induces expression of an E3 ubiquitin ligase, constitutive photomorphogenesis protein 1 (COP1). A secondary infection of C. albicans in such Mtb-infected macrophages causes COP1 to mediate the proteasomal degradation of interferon regulatory factor 9 (IRF9), a cardinal factor that we identified to arbitrate an inflammatory programmed cell death, pyroptosis. In vivo experiments mimicking a pre-existing Mtb infection demonstrate that inhibition of pyroptosis in mice results in increased C. albicans burden and aberrant lung tissue architecture, leading to increased host mortality. Together, our study reveals the crucial role of pyroptosis regulation for manifesting a successful C. albicans-Mtb coinfection.


Assuntos
Coinfecção , Mycobacterium tuberculosis , Animais , Candida albicans/genética , Humanos , Macrófagos/metabolismo , Camundongos , Piroptose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA