Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biomed Mater Res A ; 112(2): 260-275, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37750666

RESUMO

Articular cartilage defects afflict millions of individuals worldwide, presenting a significant challenge due to the tissue's limited self-repair capability and anisotropic nature. Hydrogel-based biomaterials have emerged as promising candidates for scaffold production in artificial cartilage construction, owing to their water-rich composition, biocompatibility, and tunable properties. Nevertheless, conventional hydrogels typically lack the anisotropic structure inherent to natural cartilage, impeding their clinical and preclinical applications. Recent advancements in tissue engineering (TE) have introduced magnetically responsive hydrogels, a type of intelligent hydrogel that can be remotely controlled using an external magnetic field. These innovative materials offer a means to create the desired anisotropic architecture required for successful cartilage TE. In this review, we first explore conventional techniques employed for cartilage repair and subsequently delve into recent breakthroughs in the application and utilization of magnetic hydrogels across various aspects of articular cartilage TE.


Assuntos
Cartilagem Articular , Humanos , Hidrogéis/química , Engenharia Tecidual/métodos , Materiais Biocompatíveis/química , Fenômenos Magnéticos , Alicerces Teciduais
2.
Eur J Transl Myol ; 32(2)2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35535444

RESUMO

In this study, the stereo-pathological effect of metformin and N-acetyl cysteine is evaluated on the uterus and ovary of polycystic ovary syndrome (PCOS) mice. 96 mature females (8-weekold, weight of 20-30 gr) BALB/c mice were classified into 6 groups including the control group (n= 16), letrozole-induced PCOS group (n=16), PCOS + metformin (n=16), PCOS+NAC (n=16) and a separate control group for NAC (n=16). Another PCOS group was maintained for a month to make sure that features remain till the end of the study. Testosterone level, vaginal cytology and stereological evaluations were assessed. Vaginal cytology in letrozole-receiving mice showed a diestrus phase continuity. Testosterone level, body weight, uterine weight, endometrial volume, myometrial volume, gland volume, stromal volume, epithelial volume, vessel volume, daughter and conglomerate glands, endometrial thickness, and myometrial thickness exhibited an increasing trend in the uterus of PCOS mice. While normal gland and vessel length decreased in the PCOS group. Ovarian volume, corticomedullary volume, primary follicles, secondary follicles, and ovarian cysts were increased in PCOS ovaries. While corpus luteum, primordial, graafian, and atretic follicles showed a decline in the PCOS group. NAC and metformin, however, managed to restore the condition to normal. Given the prevalence of PCOS and its impact on fertility, the use of noninvasive methods is of crucial significance. NAC can control and treat pathological parameters and help as a harmless drug in the treatment of women with PCOS.

3.
Int J Reprod Biomed ; 20(11): 973-988, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36618831

RESUMO

Background: Polycystic ovarian syndrome (PCOS) with anovulation, hyperandrogenism, ovarian and uterine histological changes, menstrual irregularities, etc. signs is an infertility type. It seems that melatonin and metformin can improve these abnormalities. Objective: To evaluate the effects of melatonin and metformin on the ovary and uterus in PCOS-induced mice using stereological methods. Materials and Methods: Seventy-two adult female BALB/c mice (8-wk-old, 20-30 gr) were randomly divided into control (distilled water, gavage), PCOS (90 µg/kg letrozole, gavage), PCOS+metformin (500 mg/kg, gavage), PCOS+melatonin (10 mg/kg, intraperitoneal injection), and PCOS+melatonin control (0.5% ethanol saline) groups (n = 12/each). Another PCOS group was kept for a month to ensure that PCOS features remained. Finally, a stereological evaluation of the uterus and ovary was carried out, and vaginal cytology and serum testosterone levels were assessed. Results: PCOS mice treated with metformin and melatonin had lower testosterone levels, body weight, and more regular estrus cycles than the PCOS group (p ≤ 0.001). A significant decrease in conglomerate and daughter gland numbers, and primary, secondary, atretic, and cystic follicles numbers with a significant increase in primordial and Graafian follicles, and corpus luteum numbers (p ≤ 0.001) was seen in these treated mice. Also, endometrial vessels' volume and length significantly increased, but ovarian, endometrial, myometrial, stromal, and glands volume, and endometrial and myometrial thickness dramatically declined (p ≤ 0.001). Conclusion: It appears that metformin and melatonin could restore the PCOS phenotype including estrus cycle irregularity, high testosterone level, and ovarian and uterine micromorphology to the control levels. However, the 2 treatments had similar effects on the examined parameters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA