Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Theriogenology ; 226: 236-242, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38941949

RESUMO

In mammalian ovaries, most follicles do not ovulate and are eliminated by atresia, which primarily depends on granulosa cell (GC) apoptosis. Autophagy is an alternative mechanism involved in follicle depletion in mammals through independent or tandem action with apoptosis. However, follicular autophagy has not yet been investigated in sheep; therefore, the present study aimed to investigate the involvement of autophagy in atresia among a pool of growing antral follicles in ewe ovaries. The abundance of the autophagic marker LC3B-II was determined using western blotting in GCs collected from ewe antral follicles. The antral follicles were classified as healthy or atretic based on morphological criteria and steroid measurements in follicular fluid (FF). Immunofluorescence and confocal microscopy analyses were performed on GCs to evaluate the presence of autophagic proteins and their subcellular localisation. Caspase-3 and DNA fragmentation were assessed using western blotting and TUNEL assays, respectively, in the same GC population to investigate the simultaneous apoptosis. The novel results of this study demonstrated enhanced LC3B-II protein expression in GCs of atretic follicles compared to that of healthy ones (1.3-fold increase; P = 0.0001, ANOVA), indicating a correlation between autophagy enhancement in GCs and antral follicular atresia. Autophagy, either functioning independently or in tandem with apoptosis, may be involved in the atresia of growing antral follicles in ewe ovaries because atretic GCs also showed high levels of apoptotic markers. The findings of this study might have important implication on scientific understanding of ovarian follicle dynamics.


Assuntos
Autofagia , Atresia Folicular , Células da Granulosa , Feminino , Animais , Atresia Folicular/fisiologia , Ovinos/fisiologia , Autofagia/fisiologia , Células da Granulosa/fisiologia , Ovário , Folículo Ovariano/fisiologia , Apoptose
2.
Reproduction ; 167(3)2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38112585

RESUMO

The fertilizing spermatozoa induce a Ca2+ oscillatory pattern, the universal hallmark of oocyte activation, in all sexually reproducing animals. Assisted reproductive technologies (ARTs) like intracytoplasmic sperm injection (ICSI) bypass the physiological pathway; however, while a normal Ca2+ release pattern occurs in some species, particularly humans, artificial activation is compulsory for ICSI-fertilized oocytes to develop in most farm animals. Unlike the normal oscillatory pattern, most artificial activation protocols induce a single Ca2+ spike, undermining proper ICSI-derived embryo development in these species. Curiously, diploid parthenogenetic embryos activated by the same treatments develop normally at high frequencies and implant upon transfer in the uterus. We hypothesized that, at least in ruminant embryos, the oscillatory calcium waves late in the first cell cycle target preferentially the paternal pronucleus and are fundamentally important for paternal nuclear remodeling. We believe that Ca2+ signaling is central to full totipotency deployment of the paternal genome. Research in this area could highlight the asymmetry between the parental genome reprogramming timing/mechanisms in early development and impact ARTs like ICSI and cloning.


Assuntos
Cálcio , Sêmen , Animais , Feminino , Masculino , Humanos , Cálcio/metabolismo , Sêmen/metabolismo , Citoplasma/metabolismo , Fertilização , Espermatozoides/metabolismo , Oócitos/metabolismo
3.
Front Vet Sci ; 10: 1270266, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38098985

RESUMO

Introduction: Freeze-drying techniques give alternative preservation mammalian spermatozoa without liquid nitrogen. However, most of the work has been conducted in the laboratory mouse, while little information has been gathered on large animals that could also benefit from this kind of storage. Methods: This work adapted a technique known as vacuum-drying encapsulation (VDE), originally developed for nucleic acid conservation in anhydrous state, to ram spermatozoa, and compared it to canonical lyophilization (FD), testing long-term storage at room temperature (RT) and 4°C. Results and discussion: The results demonstrated better structural stability, namely lipid composition and DNA integrity, in VDE spermatozoa than FD ones, with outcomes at RT storage comparable to 4°C. Likewise, in VDE the embryonic development was higher than in FD samples (12.8% vs. 8.7%, p < 0.001, respectively). Our findings indicated that in large mammals, it is important to consider dehydration-related changes in sperm polyunsaturated fatty acids coupled with DNA alterations, given their crucial role in embryonic development.

4.
Methods Mol Biol ; 2647: 211-224, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37041337

RESUMO

Somatic cell nuclear transfer (SCNT) is the only nuclear reprogramming method that allows rewinding an adult nucleus into a totipotent state. As such, it offers excellent opportunities for the multiplication of elite genotypes or endangered animals, whose number have shrunk to below the threshold of safe existence. Disappointingly, SCNT efficiency is still low. Hence, it would be wise to store somatic cells from threatened animals in biobanks. We were the first to show that freeze-dried cells allow generating blastocysts upon SCNT. Only a few papers have been published on the topic since then, and viable offspring have not been produced. On the other hand, lyophilization of mammalian spermatozoa has made considerable progress, partially due to the physical stability that protamines provide to the genome. In our previous work, we have demonstrated that a somatic cell could be made more amenable to the oocyte reprogramming by the exogenous expression of human Protamine 1. Given that the protamine also provides natural protection against dehydration stress, we have combined the cell protaminization and lyophilization protocols. This chapter comprehensively describes the protocol for somatic cell protaminization, lyophilization, and its application in SCNT. We are confident that our protocol will be relevant for establishing somatic cells stocks amenable to reprogramming at low cost.


Assuntos
Núcleo Celular , Técnicas de Transferência Nuclear , Masculino , Animais , Humanos , Núcleo Celular/genética , Espermatozoides , Blastocisto , Protaminas , Mamíferos/genética
5.
Reproduction ; 165(3): R75-R89, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36449538

RESUMO

In brief: Understanding the establishment of post-fertilization totipotency has broad implications for modern biotechnologies. This review summarizes the current knowledge of putative egg components governing this process following natural fertilization and after somatic cell nuclear transfer. Abstract: The mammalian oocyte is a unique cell, and comprehending its physiology and biology is essential for understanding fertilization, totipotency and early events of embryogenesis. Consequently, research in these areas influences the outcomes of various technologies, for example, the production and conservation of laboratory and large animals with rare and valuable genotypes, the rescue of the species near extinction, as well as success in human assisted reproduction. Nevertheless, even the most advanced and sophisticated reproductive technologies of today do not always guarantee a favorable outcome. Elucidating the interactions of oocyte components with its natural partner cell - the sperm or an 'unnatural' somatic nucleus, when the somatic cell nucleus transfer is used is essential for understanding how totipotency is established and thus defining the requirements for normal development. One of the crucial aspects is the stoichiometry of different reprogramming and remodeling factors present in the oocyte and their balance. Here, we discuss how these factors, in combination, may lead to the formation of a new organism. We focus on the laboratory mouse and its genetic models, as this species has been instrumental in shaping our understanding of early post-fertilization events.


Assuntos
Núcleo Celular , Sêmen , Humanos , Animais , Camundongos , Masculino , Núcleo Celular/fisiologia , Espermatozoides/fisiologia , Desenvolvimento Embrionário , Oócitos/fisiologia , Mamíferos
6.
Theriogenology ; 195: 31-39, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36279698

RESUMO

Lyophilisation is an alternative method for sperm preservation. The aim of this study was to evaluate the effects of freeze-thawing (F/T) and freeze-drying (F/D) on the quality of epididymal goat sperm. Sperm from each region of the epididymis (caput, corpus and cauda) were collected and evaluated for the expression of phospholipase C zeta (PLC-ζ), protamine 1 (PRM1), transition protein 1 (TNP1) and 2 (TNP2). The effects of F/T and F/D on sperm quality in terms of PLC-ζ expression, chromatin stability (Chromomycin A3; CMA3) and DNA integrity were examined. The fertilising ability after intracytoplasmic sperm injection (ICSI) was also tested. Fresh sperm existed PLC-ζ, PRM1, TNP1 and TNP2, irrespective of the regions of the epididymis. However, different patterns of PLC-ζ expression were found. Although PRM1, TNP1, TNP2 were still expressed after F/T or F/D, only F/T could preserve the presence of PLC-ζ. For fresh sperm, caput epididymal sperm had the lowest evidence of chromatin stability when compared to sperm harvested from other regions of the epididymis. The F/T and F/D further increased the numbers of CMA3-positive sperm (P < 0.001). In all cases, no CMA3 staining was observed in caudal epididymal sperm. The caudal epididymal sperm had significantly greater proportions of sperm with intact DNA compared with caput and corpus epididymal sperm, especially when F/T and F/D were performed. The fertilisation rates of F/D sperm tended to decrease when compared with F/T sperm (4.2 ± 3.2 vs. 13.6 ± 9.0, P = 0.08). It is concluded that the sperm recovered from the caudal epididymis is suitable for freezing and lyophilisation. However, poor fertilisation rates of F/D sperm were coincidently observed, with a deficit demonstration of PLC-ζ.


Assuntos
Epididimo , Cabras , Masculino , Animais , Sêmen , Espermatozoides , Cromatina/metabolismo
8.
Sci Rep ; 12(1): 16152, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36167966

RESUMO

Studies of mitochondrial dynamics have identified an intriguing link between energy supply balance and mitochondrial architecture. This suggests that inappropriate culture conditions might inhibit mitochondrial functions, and affect embryonic development. Therefore, this study was conducted to determine whether in vitro culture (IVC) might affect mitochondrial function, distribution, organization (by Mitotracker Green), gene expression on RNA level (by qPCR), and protein expression and localization (by western blot and immunostaining) involved in regulation of mitochondrial functions. Mitochondria in 2-cell IVC embryos were less numerous compare to IN VIVO while the localization and distribution do not differ between the groups. Mitochondria of in vivo blastocysts formed elongated network along the cells, while in IVC were fragmented, rounded, and aggregated mainly in the perinuclear region. Additionally, mitochondria of IN VIVO embryos moved back and forth along their long axis on radial tracks, while in IVC blastocysts were much less active. mtDNA copy number in IVC blastocysts (92,336.65 ± 5860.04) was significantly lower than that of IN VIVO (169,103.92 ± 16,322.41; P < 0.02) as well as lower protein expressions responsible for mitochondrial fusion was observed in IVC blastocysts. Results indicate that in vitro culture affect on perturbations in mitochondrial number and function, which is associated with decreased developmental competence of in vitro produced mouse embryos.


Assuntos
Blastocisto , Mitocôndrias , Animais , Blastocisto/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Técnicas de Cultura Embrionária , Desenvolvimento Embrionário/genética , Feminino , Camundongos , Mitocôndrias/metabolismo , Gravidez , RNA/metabolismo
9.
J Anim Sci ; 100(8)2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35580043

RESUMO

Experimental and epidemiological studies suggest that maternal nutritional status during early pregnancy, including the period around the time of conception, may induce long-lasting epigenetic changes in the offspring. However, this remains largely unexplored in livestock. Therefore, the objective of this study was to evaluate if modification of the maternal diet of sheep (CTR: control; UND: 50% undernutrition) during the periconceptional period (42 d in total: -14/+28 from mating), would impact CpG methylation in muscle tissue (Longissimus dorsi) of adult offspring (11.5 mo old). Reduced representation bisulfite sequencing identified 262 (Edge-R, FDR < 0.05) and 686 (logistic regression, FDR < 0.001) differentially methylated regions (DMRs) between the UND and CTR groups. Gene ontology analysis identified genes related to development, functions of the muscular system, and steroid hormone receptor activity within the DMRs. The data reported here show that nutritional stress during early pregnancy leads to epigenetic modifications in the muscle of the resulting offspring, with possible implications for cardiac dysfunction, muscle physiology, and meat production.


The formation of the epigenetic pattern of an organism is highly sensitive to environmental factors, especially during early mammalian development, when epigenetic reprogramming of the whole genome takes place. In utero adverse conditions experienced during early pregnancy, such as maternal undernutrition, may induce long-lasting epigenetic changes in the resulting offspring. This study investigated the CpG methylation variations in muscle tissue of adult offspring induced by differences in the diet of their mothers during pregnancy. Our data show that undernutrition during pregnancy leads to epigenetic alterations in the muscle of the offspring, with a potential impact on animal health and productivity.


Assuntos
Desnutrição , Doenças dos Ovinos , Animais , Metilação de DNA , Epigênese Genética , Feminino , Desnutrição/veterinária , Fenômenos Fisiológicos da Nutrição Materna , Troca Materno-Fetal , Músculos , Gravidez , Ovinos
10.
J Reprod Dev ; 68(3): 165-172, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35431279

RESUMO

It is now approximately 25 years since the sheep Dolly, the first cloned mammal where the somatic cell nucleus from an adult donor was used for transfer, was born. So far, somatic cell nucleus transfer, where G1-phase nuclei are transferred into cytoplasts obtained by enucleation of mature metaphase II (MII) oocytes followed by the activation of the reconstructed cells, is the most efficient approach to reprogram/remodel the differentiated nucleus. In general, in an enucleated oocyte (cytoplast), the nuclear envelope (NE, membrane) of an injected somatic cell nucleus breaks down and chromosomes condense. This condensation phase is followed, after subsequent activation, by chromatin decondensation and formation of a pseudo-pronucleus (i) whose morphology should resemble the natural postfertilization pronuclei (PNs). Thus, the volume of the transferred nuclei increases considerably by incorporating the content released from the germinal vesicles (GVs). In parallel, the transferred nucleus genes must be reset and function similarly as the relevant genes in normal embryo reprogramming. This, among others, covers the relevant epigenetic modifications and the appropriate organization of chromatin in pseudo-pronuclei. While reprogramming in SCNT is often discussed, the remodeling of transferred nuclei is much less studied, particularly in the context of the developmental potential of SCNT embryos. It is now evident that correct reprogramming mirrors appropriate remodeling. At the same time, it is widely accepted that the process of rebuilding the nucleus following SCNT is instrumental to the overall success of this procedure. Thus, in our contribution, we will mostly focus on the remodeling of transferred nuclei. In particular, we discuss the oocyte organelles that are essential for the development of SCNT embryos.


Assuntos
Técnicas de Transferência Nuclear , Zigoto , Animais , Núcleo Celular/metabolismo , Cromatina/metabolismo , Mamíferos/genética , Técnicas de Transferência Nuclear/veterinária , Oócitos , Ovinos/genética , Zigoto/metabolismo
11.
J Assist Reprod Genet ; 39(2): 321-325, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34984597

RESUMO

Long-term preservation of viable spermatozoa, eggs, embryos, and gonadal tissues of good quality is essential in human reproductive medicine and for the population management of livestock, laboratory, and wild species. Instead of using freezing temperatures, encouraging findings indicate that structures and functions of gametes or gonadal tissues can be suspended in trehalose glass after dehydration and then preserved at supra-zero temperatures. As a new era in fertility preservation and biobanking is about to start, the advantages, needs, and implications of germplasm storage at room temperatures must be carefully examined. Although very promising, the development of alternate biobanking strategies does not necessarily mean that the end of the "ice age" (cryopreservation) is near.


Assuntos
Bancos de Espécimes Biológicos , Preservação da Fertilidade , Criopreservação , Células Germinativas , Humanos , Masculino , Espermatozoides , Temperatura
12.
Sci Rep ; 11(1): 22629, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34799642

RESUMO

The current protocols of in vitro fertilization and culture in sheep rely on paradigms established more than 25 years ago, where Metaphase II oocytes are co-incubated with capacitated spermatozoa overnight. While this approach maximizes the number of fertilized oocytes, on the other side it exposes them to high concentration of reactive oxygen species (ROS) generated by active and degenerating spermatozoa, and positively correlates with polyspermy. Here we set up to precisely define the time frame during which spermatozoa effectively penetrates and fertilizes the oocyte, in order to drastically reduce spermatozoa-oocyte interaction. To do that, in vitro matured sheep oocytes co-incubated with spermatozoa in IVF medium were sampled every 30 min (start of incubation time 0) to verify the presence of a fertilizing spermatozoon. Having defined the fertilization time frame (4 h, data from 105 oocytes), we next compared the standard IVF procedures overnight (about 16 h spermatozoa/oocyte exposure, group o/nIVF) with a short one (4 h, group shIVF). A lower polyspermic fertilization (> 2PN) was detected in shIVF (6.5%) compared to o/nIVF (17.8%), P < 0.05. The o/nIVF group resulted in a significantly lower 2-cell stage embryos, than shIVF [34.6% (81/234) vs 50.6% (122/241) respectively, P < 0.001]. Likewise, the development to blastocyst stage confirmed a better quality [29% (70/241) vs 23.5% (55/234), shIVF vs o/nIVF respectively] and an increased Total Cell Number (TCN) in shIVF embryos, compared with o/n ones. The data on ROS have confirmed that its generation is IVF time-dependent, with high levels in the o/nIVF group. Overall, the data suggest that a shorter oocyte-spermatozoa incubation results in an improved embryo production and a better embryo quality, very likely as a consequence of a shorter exposure to the free oxygen radicals and the ensuing oxidative stress imposed by overnight culture.


Assuntos
Fertilização in vitro/veterinária , Oócitos/fisiologia , Técnicas de Reprodução Assistida/veterinária , Espermatozoides/fisiologia , Animais , Blastocisto , Meios de Cultura , Embrião de Mamíferos , Embriologia/métodos , Feminino , Fertilização , Técnicas de Maturação in Vitro de Oócitos , Masculino , Oócitos/citologia , Oxigênio , Espécies Reativas de Oxigênio , Preservação do Sêmen , Ovinos , Capacitação Espermática , Fatores de Tempo
13.
Int J Mol Sci ; 22(21)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34769097

RESUMO

Assisted reproductive techniques (ART) and parental nutritional status have profound effects on embryonic/fetal and placental development, which are probably mediated via "programming" of gene expression, as reflected by changes in their epigenetic landscape. Such epigenetic changes may underlie programming of growth, development, and function of fetal organs later in pregnancy and the offspring postnatally, and potentially lead to long-term changes in organ structure and function in the offspring as adults. This latter concept has been termed developmental origins of health and disease (DOHaD), or simply developmental programming, which has emerged as a major health issue in animals and humans because it is associated with an increased risk of non-communicable diseases in the offspring, including metabolic, behavioral, and reproductive dysfunction. In this review, we will briefly introduce the concept of developmental programming and its relationship to epigenetics. We will then discuss evidence that ART and periconceptual maternal and paternal nutrition may lead to epigenetic alterations very early in pregnancy, and how each pregnancy experiences developmental programming based on signals received by and from the dam. Lastly, we will discuss current research on strategies designed to overcome or minimize the negative consequences or, conversely, to maximize the positive aspects of developmental programming.


Assuntos
Desenvolvimento Embrionário , Fenômenos Fisiológicos da Nutrição Materna , Técnicas de Reprodução Assistida , Animais , Epigênese Genética , Pai , Feminino , Humanos , Masculino , Estado Nutricional , Cuidado Pré-Concepcional , Gravidez , Resultado da Gravidez
14.
Theriogenology ; 169: 76-88, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33940218

RESUMO

The ongoing mass extinction of animal species at an unprecedented rate is largely caused by human activities. Progressive habitat destruction and fragmentation is resulting in accelerated loss of biodiversity on a global scale. Over decades, captive breeding programs of non-domestic species were characterized by efforts to optimize species-specific husbandry, to increase studbook-based animal exchange, and to improve enclosure designs. To counter the ongoing dramatic loss of biodiversity, new approaches are warranted. Recently, new ideas, particularly the application of assisted reproduction technologies (ART), have been incorporated into classical zoo breeding programs. These technologies include semen and oocyte collection, artificial insemination, and in-vitro embryo generation. More futuristic ideas of advanced ART (aART) implement recent advances in biotechnology and stem-cell related approaches such as cloning, inner cell mass transfer (ICM), and the stem-cell-associated techniques (SCAT) for the generation of gametes and ultimately embryos of highly endangered species, such as the northern white rhinoceros (Ceratotherium simum cottoni) of which only two female individuals are left. Both, ART and aART greatly depend on and benefit from the rapidly evolving cryopreservation techniques and biobanking not only of genetic, but also of viable cellular materials suitable for the generation of induced pluripotent stem cells (iPSC). The availability of cryopreserved materials bridges gaps in time and space, thereby optimizing the available genetic variability and enhancing the chance to restore viable populations.


Assuntos
Bancos de Espécimes Biológicos , Espécies em Perigo de Extinção , Animais , Biodiversidade , Feminino , Perissodáctilos , Técnicas de Reprodução Assistida/veterinária
15.
Animals (Basel) ; 11(5)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33926086

RESUMO

Xenogenic mammalian sperm heads injected into mouse ovulated oocytes decondense and form pronuclei in which sperm DNA parameters can be evaluated. We suggest that this approach can be used for the assessment of sperm DNA damage level and the evaluation of how certain sperm treatments (freezing, lyophilization, etc.) influence the quality of spermatozoa.

16.
Reproduction ; 162(1): F33-F43, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33666564

RESUMO

The birth of Dolly through somatic cell nuclear transfer (SCNT) was a major scientific breakthrough of the last century. Yet, while significant progress has been achieved across the technics required to reconstruct and in vitro culture nuclear transfer embryos, SCNT outcomes in terms of offspring production rates are still limited. Here, we provide a snapshot of the practical application of SCNT in farm animals and pets. Moreover, we suggest a path to improve SCNT through alternative strategies inspired by the physiological reprogramming in male and female gametes in preparation for the totipotency required after fertilization. Almost all papers on SCNT focused on nuclear reprogramming in the somatic cells after nuclear transfer. We believe that this is misleading, and even if it works sometimes, it does so in an uncontrolled way. Physiologically, the oocyte cytoplasm deploys nuclear reprogramming machinery specifically designed to address the male chromosome, the maternal alleles are prepared for totipotency earlier, during oocyte nuclear maturation. Significant advances have been made in remodeling somatic nuclei in vitro through the expression of protamines, thanks to a plethora of data available on spermatozoa epigenetic modifications. Missing are the data on large-scale nuclear reprogramming of the oocyte chromosomes. The main message our article conveys is that the next generation nuclear reprogramming strategies should be guided by insights from in-depth studies on epigenetic modifications in the gametes in preparation for fertilization.


Assuntos
Animais Domésticos/genética , Animais Geneticamente Modificados/genética , Núcleo Celular/genética , Clonagem de Organismos/veterinária , Engenharia Genética , Técnicas de Transferência Nuclear/veterinária , Animais de Estimação/genética , Animais , Animais Domésticos/crescimento & desenvolvimento , Animais Geneticamente Modificados/crescimento & desenvolvimento , Aniversários e Eventos Especiais , Clonagem de Organismos/métodos , Clonagem de Organismos/tendências , Animais de Estimação/crescimento & desenvolvimento
17.
Theriogenology ; 159: 7-12, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33113447

RESUMO

While intracytoplasmic sperm injection (ICSI) is an asset in human Assisted Reproduction Technologies (ART), its outcomes, in terms of blastocyst, is still unacceptably low in ruminants. The picture typically found in ICSI derived bovine and ovine embryos is an asymmetry between a high activation rate, marked by a pronuclear development, and a low first cleavage rate. Abnormal centriole function has been indicated as a possible factor which undermines embryonic development following ICSI, especially when Freeze Dried spermatozoa (FD) are used. In order to verify the hypothesis that centriole dysfunction might be responsible for low ICSI outcomes in sheep, we have investigated micro-tubular dynamics, markedly aster nucleation, in fertilized sheep zygotes by ICSI with frozen/thawed (FT) and FD spermatozoa; In Vitro Fertilized (IVF) sheep oocytes were used as control. The spermatozoa aster nucleation was assessed at different time points following ICSI and IVF by immune-detection of α-tubulin. Pronuclear stage, syngamy and embryo development were assessed. No difference was noticed in the timing of aster nucleation and microtubule elongation in ICSI-FT derived embryos with control IVF ones, while a delay was recorded in ICSI-FD ones. The proportion of 2-pronuclear stage zygotes was similar in ICSI-FT and ICSI-FD (47% and 53%, respectively), both much lower comparing the IVF ones (73%). Likewise, syngamy was observed in a minority of both ICSI groups (28.5% vs 12.5% in ICSI-FT/FD respectively) comparing to IVF controls (50%), with a high number of zygotes blocked at the 2-pronuclear stage (71.5% vs 87.5% respectively). While no significant differences were noticed in the cleavage rate between ICSI-FD, ICSI-FT and IVF groups (31%, 34% and 44%) respectively, development to blastocyst stage was markedly compromised in both ICSI groups, especially with FD spermatozoa (10% in ICIS-FD and 19% in ICSI-FT vs 33% in IVF (P < 0.005, ICSI-FD vs IVF and P < 0.05, IVF vs ICSI-FT, respectively). Hence, here we have demonstrated that the reduced cleavage, and the ensuing impaired development to blastocysts stage of ICSI derived sheep embryos is not related to centriole dysfunction, as suggested by other authors. The major recorded problem is the lack of syngamy in ICSI derived zygotes, an issue that should be addressed in further studies to improve ICSI procedure in sheep embryos.


Assuntos
Centríolos , Injeções de Esperma Intracitoplásmicas , Animais , Blastocisto , Bovinos , Feminino , Fertilização in vitro/veterinária , Masculino , Oócitos , Gravidez , Ovinos , Injeções de Esperma Intracitoplásmicas/veterinária , Espermatozoides
18.
Sci Rep ; 10(1): 18873, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33139842

RESUMO

Freeze-dried spermatozoa typically shows a reduction in fertility primarily due to the DNA damage resulting from the sublimation process. In order to minimize the physical/mechanical damage resulting from lyophilization, here we focused on the freezing phase, comparing two cooling protocols: (i) rapid-freezing, where ram sperm sample is directly plunged into liquid nitrogen (LN-group), as currently done; (ii) slow-freezing, where the sample is progressively cooled to - 50 °C (SF-group). The spermatozoa dried in both conditions were analysed to assess residual water content by Thermal Gravimetric Analysis (TGA) and DNA integrity using Sperm Chromatin Structure Assay (SCSA). TGA revealed more than 90% of water subtraction in both groups. A minor DNA damage, Double-Strand Break (DSB) in particular, characterized by a lower degree of abnormal chromatin structure (Alpha-T), was detected in the SF-group, comparing to the LN-one. In accordance with the structural and DNA integrity data, spermatozoa from SF-group had the best embryonic development rates, comparing to LN-group: cleaved embryos [42/100 (42%) versus 19/75 (25.3%), P < 0.05, SL and LN respectively] and blastocyst formation [7/100 (7%) versus 2/75 (2.7%), P < 0.05, SF and LN respectively]. This data represents a significant technological advancement for the development of lyophilization as a valuable and cheaper alternative to deep-freezing in LN for ram semen.


Assuntos
Desenvolvimento Embrionário/genética , Fertilidade/fisiologia , Preservação do Sêmen , Espermatozoides/crescimento & desenvolvimento , Animais , Cromatina/genética , Criopreservação , Dano ao DNA/genética , Fragmentação do DNA , Feminino , Congelamento/efeitos adversos , Masculino , Gravidez , Sêmen/metabolismo , Sêmen/fisiologia , Ovinos/genética , Ovinos/crescimento & desenvolvimento , Motilidade dos Espermatozoides/fisiologia
19.
Biochem Soc Trans ; 48(2): 581-593, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32318710

RESUMO

In nearly all somatic cells, the ribosome biosynthesis is a key activity. The same is true also for mammalian oocytes and early embryos. This activity is intimately linked to the most prominent nuclear organelles - the nucleoli. Interestingly, during a short period around fertilization, the nucleoli in oocytes and embryos transform into ribosome-biosynthesis-inactive structures termed nucleolus-like or nucleolus precursor bodies (NPBs). For decades, researchers considered these structures to be passive repositories of nucleolar proteins used by the developing embryo to rebuild fully functional, ribosome-synthesis competent nucleoli when required. Recent evidence, however, indicates that while these structures are unquestionably essential for development, the material is largely dispensable for the formation of active embryonic nucleoli. In this mini-review, we will describe some unique features of oocytes and embryos with respect to ribosome biogenesis and the changes in the structure of oocyte and embryonic nucleoli that reflect this. We will also describe some of the different approaches that can be used to study nucleoli and NPBs in embryos and discuss the different results that might be expected. Finally, we ask whether the main function of nucleolar precursor bodies might lie in the genome organization and remodelling and what the involved components might be.


Assuntos
Nucléolo Celular/metabolismo , Centrômero/metabolismo , Embrião de Mamíferos/citologia , Fertilização , Oócitos/metabolismo , Animais , Núcleo Celular/metabolismo , Desenvolvimento Embrionário/genética , Histonas/metabolismo , Humanos , Mamíferos , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/metabolismo , Organelas/metabolismo , RNA Polimerase I/metabolismo , Ribossomos/metabolismo
20.
Reproduction ; 159(5): 513-523, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32103819

RESUMO

The genotype of an organism is stable throughout its life; however, its epigenome is dynamic and can be altered in response to environmental factors, such as diet. Inheritance of acquired epigenetic modifications by the next generation occurs through the germline, although the precise mechanisms remain to be elucidated. Here, we used a sheep model to evaluate if modification of the maternal diet (CTR; control, UND: undernutrition; FA: undernutrition and folic acid supplementation) during the peri-conceptional period affects the genome-wide methylation status of the gametes of male offspring. Sperm DNA methylation, measured by Reduced Representation Bisulfite Sequencing (RRBS), identified Differentially Methylated Regions (DMR) in offspring that experienced in utero undernutrition, both in UND (244) and FA (240), compared with CTR. Gene ontology (GO) analysis identified DMRs in categories related to sperm function, therefore we investigated whether the fertilizing capacity of the semen from the three groups differed in an in vitro fertilization assay. Spermatozoa from the undernourished groups showed lower motility and sperm chromatin structure abnormalities, represented by a higher percentage of DNA fragmentation and an increased number of immature cells, compared with CTR. While good quality blastocysts were obtained from all three groups, the proportion of embryos reaching the blastocyst stage was reduced in the UND vs CTR, an effect partially rescued by the FA treatment. The data reported here show that nutritional stress during early pregnancy leads to epigenetic modifications in the semen of the resulting offspring, the effects of which in next generation remain to be elucidated.


Assuntos
Metilação de DNA , Desnutrição/metabolismo , Fenômenos Fisiológicos da Nutrição Materna/fisiologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Espermatozoides/metabolismo , Animais , Epigenoma , Feminino , Masculino , Gravidez , Ovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA