Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Stem Cell Reports ; 18(1): 175-189, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36630901

RESUMO

Characterizing cell identity in complex tissues such as the human retina is essential for studying its development and disease. While retinal organoids derived from pluripotent stem cells have been widely used to model development and disease of the human retina, there is a lack of studies that have systematically evaluated the molecular and cellular fidelity of the organoids derived from various culture protocols in recapitulating their in vivo counterpart. To this end, we performed an extensive meta-atlas characterization of cellular identities of the human eye, covering a wide range of developmental stages. The resulting map uncovered previously unknown biomarkers of major retinal cell types and those associated with cell-type-specific maturation. Using our retinal-cell-identity map from the fetal and adult tissues, we systematically assessed the fidelity of the retinal organoids in mimicking the human eye, enabling us to comprehensively benchmark the current protocols for retinal organoid generation.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Adulto , Humanos , Retina/metabolismo , Células-Tronco Pluripotentes/metabolismo , Neurônios , Organoides , Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/metabolismo
2.
Int J Mol Sci ; 23(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35409265

RESUMO

The inherited retinal dystrophies (IRDs) are a clinically and genetically complex group of disorders primarily affecting the rod and cone photoreceptors or other retinal neuronal layers, with emerging therapies heralding the need for accurate molecular diagnosis. Targeted capture and panel-based strategies examining the partial or full exome deliver molecular diagnoses in many IRD families tested. However, approximately one in three families remain unsolved and unable to obtain personalised recurrence risk or access to new clinical trials or therapy. In this study, we investigated whole genome sequencing (WGS), focused assays and functional studies to assist with unsolved IRD cases and facilitate integration of these approaches to a broad molecular diagnostic clinical service. The WGS approach identified variants not covered or underinvestigated by targeted capture panel-based clinical testing strategies in six families. This included structural variants, with notable benefit of the WGS approach in repetitive regions demonstrated by a family with a hybrid gene and hemizygous missense variant involving the opsin genes, OPN1LW and OPN1MW. There was also benefit in investigation of the repetitive GC-rich ORF15 region of RPGR. Further molecular investigations were facilitated by focused assays in these regions. Deep intronic variants were identified in IQCB1 and ABCA4, with functional RNA based studies of the IQCB1 variant revealing activation of a cryptic splice acceptor site. While targeted capture panel-based methods are successful in achieving an efficient molecular diagnosis in a proportion of cases, this study highlights the additional benefit and clinical value that may be derived from WGS, focused assays and functional genomics in the highly heterogeneous IRDs.


Assuntos
Distrofias Retinianas , Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Ligação a Calmodulina/genética , Exoma , Proteínas do Olho/genética , Humanos , Mutação , Linhagem , Sítios de Splice de RNA , Distrofias Retinianas/diagnóstico , Distrofias Retinianas/genética , Sequenciamento do Exoma/métodos , Sequenciamento Completo do Genoma
3.
J Pers Med ; 12(3)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35330501

RESUMO

The RPGR gene encodes Retinitis Pigmentosa GTPase Regulator, a known interactor with ciliary proteins, which is involved in maintaining healthy photoreceptor cells. Variants in RPGR are the main contributor to X-linked rod-cone dystrophy (RCD), and RPGR gene therapy approaches are in clinical trials. Hence, elucidation of the pathogenicity of novel RPGR variants is important for a patient therapy opportunity. Here, we describe a novel intronic RPGR variant, c.1415 − 9A>G, in a patient with RCD, which was classified as a variant of uncertain significance according to current clinical diagnostic criteria. The variant lay several base pairs intronic to the canonical splice acceptor site, raising suspicion of an RPGR RNA splicing abnormality and consequent protein dysfunction. To investigate disease causation in an appropriate disease model, induced pluripotent stem cells were generated from patient fibroblasts and differentiated to retinal pigment epithelium (iPSC-RPE) and retinal organoids (iPSC-RO). Abnormal RNA splicing of RPGR was demonstrated in patient fibroblasts, iPSC-RPE and iPSC-ROs, leading to a predicted frameshift and premature stop codon. Decreased RPGR expression was demonstrated in these cell types, with a striking loss of RPGR localization at the ciliary transitional zone, critically in the photoreceptor cilium of the patient iPSC-ROs. Mislocalisation of rhodopsin staining was present in the patient's iPSC-RO rod photoreceptor cells, along with an abnormality of L/M opsin staining affecting cone photoreceptor cells and increased photoreceptor apoptosis. Additionally, patient iPSC-ROs displayed an increase in F-actin expression that was consistent with an abnormal actin regulation phenotype. Collectively, these studies indicate that the splicing abnormality caused by the c.1415 − 9A>G variant has an impact on RPGR function. This work has enabled the reclassification of this variant to pathogenic, allowing the consideration of patients with this variant having access to gene therapy clinical trials. In addition, we have identified biomarkers of disease suitable for the interrogation of other RPGR variants of uncertain significance.

4.
Stem Cells Int ; 2021: 4536382, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34938339

RESUMO

Human induced pluripotent stem cells (hiPSCs) generated from patients and the derivative retinal cells enable the investigation of pathological and novel variants in relevant cell populations. Biallelic pathogenic variants in RPE65 cause early-onset severe retinal dystrophy (EOSRD) or Leber congenital amaurosis (LCA). Increasingly, regulatory-approved in vivo RPE65 retinal gene replacement therapy is available for patients with these clinical features, but only if they have biallelic pathological variants and sufficient viable retinal cells. In our cohort of patients, we identified siblings with early-onset severe retinal degeneration where genomic studies revealed compound heterozygous variants in RPE65, one a known pathogenic missense variant and the other a novel synonymous variant of uncertain significance. The synonymous variant was suspected to affect RNA splicing. Since RPE65 is very poorly expressed in all tissues except the retinal pigment epithelium (RPE), we generated hiPSC-derived RPE cells from the parental carrier of the synonymous variant. Sequencing of RNA obtained from hiPSC-RPE cells demonstrated heterozygous skipping of RPE65 exon 2 and the introduction of a premature stop codon in the mRNA. Minigene studies confirmed the splicing aberration. Results from this study led to reclassification of the synonymous variant to a pathogenic variant, providing the affected patients with access to RPE65 gene replacement therapy.

5.
Eur J Hum Genet ; 29(5): 881-886, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33633367

RESUMO

The COL9A3 gene encodes one of the three alpha chains of Type IX collagen, with heterozygous variants reported to cause multiple epiphyseal dysplasia, and suggested as contributory in some cases of sensorineural hearing loss. Patients with homozygous variants have midface hypoplasia, myopia, sensorineural hearing loss, epiphyseal changes and carry a diagnosis of Stickler syndrome. Variants in COL9A3 have not previously been reported to cause vitreoretinal degeneration and/or retinal detachments. This report describes two families with autosomal dominant inheritance and predominant features of peripheral vitreoretinal lattice degeneration and retinal detachment. Genomic sequencing revealed a heterozygous splice variant in COL9A3 [NG_016353.1(NM_001853.4):c.1107 + 1G>C, NC_000020.10(NM_001853.4):c.1107 + 1G>C, LRG1253t1] in Family 1, and a heterozygous missense variant [NG_016353.1(NM_001853.4):c.388G>A p.(Gly130Ser)] in Family 2, each segregating with disease. cDNA studies of the splice variant demonstrated an in-frame deletion in the COL2 domain, and the missense variant occurred in the COL3 domain, both indicating the critical role of Type IX collagen in the vitreous base of the eye.


Assuntos
Colágeno Tipo IX/genética , Degeneração Retiniana/genética , Descolamento Retiniano/genética , Adulto , Feminino , Genes Dominantes , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Linhagem , Degeneração Retiniana/patologia , Descolamento Retiniano/patologia , Corpo Vítreo/patologia
6.
Stem Cell Reports ; 15(3): 735-748, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32763163

RESUMO

Induced pluripotent stem cells (iPSCs) are an invaluable resource for the study of human disease. However, there are no standardized methods for differentiation into hematopoietic cells, and there is a lack of robust, direct comparisons of different methodologies. In the current study we improved a feeder-free, serum-free method for generation of hematopoietic cells from iPSCs, and directly compared this with three other commonly used strategies with respect to efficiency, repeatability, hands-on time, and cost. We also investigated their capability and sensitivity to model genetic hematopoietic disorders in cells derived from Down syndrome and ß-thalassemia patients. Of these methods, a multistep monolayer-based method incorporating aryl hydrocarbon receptor hyperactivation ("2D-multistep") was the most efficient, generating significantly higher numbers of CD34+ progenitor cells and functional hematopoietic progenitors, while being the most time- and cost-effective and most accurately recapitulating phenotypes of Down syndrome and ß-thalassemia.


Assuntos
Diferenciação Celular , Hematopoese , Células-Tronco Pluripotentes Induzidas/citologia , Carbazóis/metabolismo , Contagem de Células , Células Cultivadas , Síndrome de Down/patologia , Embrião de Mamíferos/metabolismo , Globinas/metabolismo , Humanos , Talassemia beta/patologia
7.
Leuk Lymphoma ; 57(2): 411-418, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25904380

RESUMO

Durable responses to imatinib monotherapy are rarely seen in aggressive forms of Philadelphia chromosome positive (Ph+) leukemias. To investigate the possible cause of treatment failure we examined the role of protein kinase C epsilon (PKCE), an oncogene highly implicated in the development of solid tumors and resistance to chemotherapy. We found high levels of PKCE transcripts in Ph+ acute lymphoblastic leukemia (ALL) cells from patients and cell lines, and imatinib resistant chronic myeloid leukemia, which were also less responsive to imatinib-induced apoptosis than Ph+ cells with lower PKCE expression. Furthermore, the siRNA-mediated knockdown or peptide inhibition of PKCE in Ph+ cells increased imatinib-induced apoptosis while overexpression of PKCE reduced imatinib-induced apoptosis, with concomitant increase in the pro-survival factor AKT. Our results suggest PKCE plays a protective role against apoptosis induced by BCR-ABL inhibition in Ph+ leukemias with high PKCE expression, such as Ph+ ALL.

8.
BMC Med Genomics ; 4: 27, 2011 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-21453471

RESUMO

BACKGROUND: Diagnostic accuracy of lymphoma, a heterogeneous cancer, is essential for patient management. Several ancillary tests including immunophenotyping, and sometimes cytogenetics and PCR are required to aid histological diagnosis. In this proof of principle study, gene expression microarray was evaluated as a single platform test in the differential diagnosis of common lymphoma subtypes and reactive lymphadenopathy (RL) in lymph node biopsies. METHODS: 116 lymph node biopsies diagnosed as RL, classical Hodgkin lymphoma (cHL), diffuse large B cell lymphoma (DLBCL) or follicular lymphoma (FL) were assayed by mRNA microarray. Three supervised classification strategies (global multi-class, local binary-class and global binary-class classifications) using diagonal linear discriminant analysis was performed on training sets of array data and the classification error rates calculated by leave one out cross-validation. The independent error rate was then evaluated by testing the identified gene classifiers on an independent (test) set of array data. RESULTS: The binary classifications provided prediction accuracies, between a subtype of interest and the remaining samples, of 88.5%, 82.8%, 82.8% and 80.0% for FL, cHL, DLBCL, and RL respectively. Identified gene classifiers include LIM domain only-2 (LMO2), Chemokine (C-C motif) ligand 22 (CCL22) and Cyclin-dependent kinase inhibitor-3 (CDK3) specifically for FL, cHL and DLBCL subtypes respectively. CONCLUSIONS: This study highlights the ability of gene expression profiling to distinguish lymphoma from reactive conditions and classify the major subtypes of lymphoma in a diagnostic setting. A cost-effective single platform "mini-chip" assay could, in principle, be developed to aid the quick diagnosis of lymph node biopsies with the potential to incorporate other pathological entities into such an assay.


Assuntos
Perfilação da Expressão Gênica , Linfonodos/patologia , Doenças Linfáticas/diagnóstico , Doenças Linfáticas/genética , Linfoma/diagnóstico , Linfoma/genética , Doença de Hodgkin/genética , Humanos , Linfoma Folicular/genética , Linfoma Difuso de Grandes Células B/genética , Análise em Microsséries
9.
Artigo em Inglês | MEDLINE | ID: mdl-21321369

RESUMO

Current feature selection methods for supervised classification of tissue samples from microarray data generally fail to exploit complementary discriminatory power that can be found in sets of features. Using a feature selection method with the computational architecture of the cross-entropy method, including an additional preliminary step ensuring a lower bound on the number of times any feature is considered, we show when testing on a human lymph node data set that there are a significant number of genes that perform well when their complementary power is assessed, but "pass under the radar" of popular feature selection methods that only assess genes individually on a given classification tool. We also show that this phenomenon becomes more apparent as diagnostic specificity of the tissue samples analysed increases.


Assuntos
Biologia Computacional/métodos , Mineração de Dados/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Algoritmos , Inteligência Artificial , Bases de Dados Genéticas , Humanos , Linfonodos/química , Linfonodos/patologia , Linfoma de Células B/genética , Linfoma de Células B/patologia
10.
Biochim Biophys Acta ; 1642(1-2): 45-52, 2003 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-12972292

RESUMO

The endothelin B receptor (ETB) is an endothelial cell receptor found in caveolae. Studies with GFP-tagged ETB have suggested that the protein is constitutively endocytosed and targeted to lysosomes where it is rapidly degraded. We report that iodinated endothelin-1 ligand (ET-1) is taken up by cells transfected with ETB and remains undegraded for at least 17 h. Analysis of the intracellular traffic of endocytosed ET-1 on isotonic Ficoll gradients shows that it is rapidly internalised to lysosomes by a chloroquine sensitive and cholesterol dependent pathway. Low-temperature nonreducing SDS gels show that the ET-1 initially binds to full-length GFP-tagged ETB, which is rapidly clipped at the amino-terminus and is then stable for at least 6 h. Analysis of GFP tagged ETB on reducing SDS gels shows that it is proteolytically cleaved with a half time of approximately 3 h. However, nonreducing gels show that the receptor is virtually intact, suffering only a similar cleavage to the liganded receptor. We conclude that the ETB receptor shows remarkable stability in lysosomes, held together by disulfide bonds, and maintaining ligand binding for long periods of time.


Assuntos
Endocitose/fisiologia , Endotelina-1/metabolismo , Endotélio Vascular/metabolismo , Lisossomos/metabolismo , Receptores de Endotelina/metabolismo , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/fisiologia , Cavéolas/efeitos dos fármacos , Cavéolas/metabolismo , Células Cultivadas , Cloroquina/farmacologia , Colesterol/metabolismo , Dissulfetos/metabolismo , Endocitose/efeitos dos fármacos , Endotelina-1/farmacologia , Endotélio Vascular/efeitos dos fármacos , Humanos , Ligantes , Lisossomos/efeitos dos fármacos , Peptídeo Hidrolases/efeitos dos fármacos , Peptídeo Hidrolases/metabolismo , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia , Receptor de Endotelina B , Receptores de Endotelina/efeitos dos fármacos , Proteínas Recombinantes de Fusão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA