Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
ACS Med Chem Lett ; 13(11): 1723-1729, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36385923

RESUMO

ε-Trimethyllysine dioxygenase (TMLD) is a non-heme Fe(II) and α-ketoglutarate dependent oxygenase that catalyzes the stereospecific hydroxylation of ε-trimethyl-l-lysine (TML) to ß-hydroxy-TML during the first step of l-carnitine biosynthesis. Targeting TMLD with inhibitors is a viable strategy for the treatment of cardiovascular diseases. Herein, we report a methodology for isothermal titration calorimetry analysis of TMLD substrate analogue binding to the enzyme. Despite the high structural similarity of the tested compounds, two different binding mechanisms (enthalpy- and entropy-driven) were observed, giving insight into the ligand (substrate) selectivity of TMLD. We demonstrate that the method allows distinguishing a natural substrate-like binding mode, which correlates with the ability of the compounds to serve as substrates in the TMLD catalytic reaction.

2.
ACS Med Chem Lett ; 9(2): 84-88, 2018 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-29456792

RESUMO

N-Leucinyl benzenesulfonamides have been discovered as a novel class of potent inhibitors of E. coli leucyl-tRNA synthetase. The binding of inhibitors to the enzyme was measured by using isothermal titration calorimetry. This provided information on enthalpy and entropy contributions to binding, which, together with docking studies, were used for structure-activity relationship analysis. Enzymatic assays revealed that N-leucinyl benzenesulfonamides display remarkable selectivity for E. coli leucyl-tRNA synthetase compared to S. aureus and human orthologues. The simplest analogue of the series, N-leucinyl benzenesulfonamide (R = H), showed the highest affinity against E. coli leucyl-tRNA synthetase and also exhibited antibacterial activity against Gram-negative pathogens (the best MIC = 8 µg/mL, E. coli ATCC 25922), which renders it as a promising template for antibacterial drug discovery.

3.
Biofactors ; 43(5): 718-730, 2017 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-28759135

RESUMO

Acylcarnitine accumulation has been linked to perturbations in energy metabolism pathways. In this study, we demonstrate that long-chain (LC) acylcarnitines are active metabolites involved in the regulation of glucose metabolism in vivo. Single-dose administration of palmitoylcarnitine (PC) in fed mice induced marked insulin insensitivity, decreased glucose uptake in muscles, and elevated blood glucose levels. Increase in the content of LC acylcarnitine induced insulin resistance by impairing Akt phosphorylation at Ser473. The long-term administration of PC using slow-release osmotic minipumps induced marked hyperinsulinemia, insulin resistance, and glucose intolerance, suggesting that the permanent accumulation of LC acylcarnitines can accelerate the progression of insulin resistance. The decrease of acylcarnitine content significantly improved glucose tolerance in a mouse model of diet-induced glucose intolerance. In conclusion, we show that the physiological increase in content of acylcarnitines ensures the transition from a fed to fasted state in order to limit glucose metabolism in the fasted state. In the fed state, the inability of insulin to inhibit LC acylcarnitine production induces disturbances in glucose uptake and metabolism. The reduction of acylcarnitine content could be an effective strategy to improve insulin sensitivity. © 2017 BioFactors, 43(5):718-730, 2017.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Resistência à Insulina/genética , Músculo Esquelético/metabolismo , Palmitoilcarnitina/administração & dosagem , Animais , Glicemia/efeitos dos fármacos , Metabolismo dos Carboidratos/efeitos dos fármacos , Carnitina/análogos & derivados , Carnitina/metabolismo , Gorduras na Dieta , Glucose/metabolismo , Humanos , Insulina/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , Músculo Esquelético/patologia
4.
Pharmacol Res ; 85: 33-8, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24836867

RESUMO

l-Carnitine is a cofactor in the energy metabolism pathways where it drives the uptake and oxidation of long chain fatty acids (LCFA) by mitochondria. LCFA lipotoxicity causes mitochondrial damage and results in an insufficient energy supply and a decrease in l-carnitine content limits LCFA flux and protects mitochondria. Here, we tested whether the inhibition of GBB dioxygenase (BBOX) or organic cation transporter 2 (OCTN2) is the most effective strategy to decrease l-carnitine content. The activity of 51 compounds was tested and we identified selective inhibitors of OCTN2. In contrast to selective inhibitors of BBOX, OCTN2 inhibitors induced a 10-fold decrease in l-carnitine content in the heart tissues and a significant 35% reduction of myocardial infarct size. In addition, OCTN2 inhibition correlated with the inhibitor content in the heart tissues, and OCTN2 could potentially be an efficient target to increase drug transport into tissues and to reduce drug elimination by urine. In conclusion, the results of this study confirm that selective inhibition of OCTN2, compared to selective inhibition of BBOX, is a far more effective approach to decrease l-carnitine content and to induce cardioprotective effects. OCTN2 could potentially be an efficient tool to increase drug transport in tissues and to reduce drug elimination via urine.


Assuntos
Cardiotônicos/uso terapêutico , Carnitina/metabolismo , Infarto do Miocárdio/tratamento farmacológico , Proteínas de Transporte de Cátions Orgânicos/antagonistas & inibidores , gama-Butirobetaína Dioxigenase/antagonistas & inibidores , Animais , Cardiotônicos/farmacologia , Carnitina/sangue , Carnitina/urina , Masculino , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Ratos Wistar , Membro 5 da Família 22 de Carreadores de Soluto
5.
J Med Chem ; 57(6): 2213-36, 2014 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-24571165

RESUMO

γ-Butyrobetaine hydroxylase (BBOX) catalyzes the conversion of gamma butyrobetaine (GBB) to l-carnitine, which is involved in the generation of metabolic energy from long-chain fatty acids. BBOX inhibitor 3-(1,1,1-trimethylhydrazin-1-ium-2-yl)propanoate (mildronate), which is an approved, clinically used cardioprotective drug, is a relatively poor BBOX inhibitor and requires high daily doses. In this paper we describe the design, synthesis, and properties of 51 compounds, which include both GBB and mildronate analogues. We have discovered novel BBOX inhibitors with improved IC50 values; the best examples are in the nanomolar range and about 2 orders of magnitude better when compared to mildronate. For six inhibitors, crystal structures in complex with BBOX have been solved to explain their activities and pave the way for further inhibitor design.


Assuntos
Carnitina/antagonistas & inibidores , Carnitina/biossíntese , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , gama-Butirobetaína Dioxigenase/antagonistas & inibidores , Calorimetria , Cristalografia por Raios X , Desenho de Fármacos , Humanos , Indicadores e Reagentes , Cinética , Ligantes , Espectroscopia de Ressonância Magnética , Metilidrazinas/química , Metilidrazinas/farmacologia , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Proteínas Recombinantes/química , Relação Estrutura-Atividade , gama-Butirobetaína Dioxigenase/genética
6.
Eur J Med Chem ; 44(3): 1067-85, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18672316

RESUMO

Enzymatic inhibition of histone deacetylase (HDAC) activity is emerging as an innovative and effective approach for the treatment of cancer. A series of novel amide derivatives have been synthesized and evaluated for their ability to inhibit human HDACs. Multiple compounds were identified as potent HDAC inhibitors (HDACi), with IC(50) values in the low nanomolar (nM) range against enzyme activity in HeLa cell extracts and sub-microM for their in vitro anti-proliferative effect on cell lines. The introduction of an unsaturated linking group between the terminal aryl ring and the amide moiety was the key to obtain good potency. This approach yielded compounds such as (E)-N-[6-(hydroxyamino)-6-oxohexyl]-3-(7-quinolinyl)-2-propenamide (27) (HDAC IC(50) 8 nM) which showed potent in vivo activity in the P388 mouse leukemia syngeneic model (an increased lifespan (ILS) of 111% was obtained).


Assuntos
Amidas/farmacologia , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Inibidores de Histona Desacetilases , Amidas/química , Inibidores Enzimáticos/química , Humanos , Espectroscopia de Ressonância Magnética , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA