Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Adv Sci (Weinh) ; 10(30): e2300055, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37712185

RESUMO

Bioprinting is a booming technology, with numerous applications in tissue engineering and regenerative medicine. However, most biomaterials designed for bioprinting depend on the use of sacrificial baths and/or non-physiological stimuli. Printable biomaterials also often lack tunability in terms of their composition and mechanical properties. To address these challenges, the authors introduce a new biomaterial concept that they have termed "clickable dynamic bioinks". These bioinks use dynamic hydrogels that can be printed, as well as chemically modified via click reactions to fine-tune the physical and biochemical properties of printed objects after printing. Specifically, using hyaluronic acid (HA) as a polymer of interest, the authors investigate the use of a boronate ester-based crosslinking reaction to produce dynamic hydrogels that are printable and cytocompatible, allowing for bioprinting. The resulting dynamic bioinks are chemically modified with bioorthogonal click moieties to allow for a variety of post-printing modifications with molecules carrying the complementary click function. As proofs of concept, the authors perform various post-printing modifications, including adjusting polymer composition (e.g., HA, chondroitin sulfate, and gelatin) and stiffness, and promoting cell adhesion via adhesive peptide immobilization (i.e., RGD peptide). The results also demonstrate that these modifications can be controlled over time and space, paving the way for 4D bioprinting applications.


Assuntos
Bioimpressão , Impressão Tridimensional , Materiais Biocompatíveis/química , Engenharia Tecidual/métodos , Hidrogéis/química , Polímeros , Bioimpressão/métodos , Ácido Hialurônico/química
2.
Mater Today Bio ; 19: 100581, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36896417

RESUMO

Osteoarthritis (OA) is an inflammatory joint disease that affects cartilage, subchondral bone, and joint tissues. Undifferentiated Mesenchymal Stromal Cells are a promising therapeutic option for OA due to their ability to release anti-inflammatory, immuno-modulatory, and pro-regenerative factors. They can be embedded in hydrogels to prevent their tissue engraftment and subsequent differentiation. In this study, human adipose stromal cells are successfully encapsulated in alginate microgels via a micromolding method. Microencapsulated cells retain their in vitro metabolic activity and bioactivity and can sense and respond to inflammatory stimuli, including synovial fluids from OA patients. After intra-articular injection in a rabbit model of post-traumatic OA, a single dose of microencapsulated human cells exhibit properties matching those of non-encapsulated cells. At 6 and 12 weeks post-injection, we evidenced a tendency toward a decreased OA severity, an increased expression of aggrecan, and a reduced expression of aggrecanase-generated catabolic neoepitope. Thus, these findings establish the feasibility, safety, and efficacy of injecting cells encapsulated in microgels, opening the door to a long-term follow-up in canine OA patients.

3.
Bioact Mater ; 24: 438-449, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36632500

RESUMO

The cellular microenvironment plays a major role in the biological functions of cells. Thus, biomaterials, especially hydrogels, which can be design to mimic the cellular microenvironment, are being increasingly used for cell encapsulation, delivery, and 3D culture, with the hope of controlling cell functions. Yet, much remains to be understood about the effects of cell-material interactions, and advanced synthetic strategies need to be developed to independently control the mechanical and biochemical properties of hydrogels. To address this challenge, we designed a new hyaluronic acid (HA)-based hydrogel platform using a click and bioorthogonal strain-promoted azide-alkyne cycloaddition (SPAAC) reaction. This approach facilitates the synthesis of hydrogels that are easy to synthesize and sterilize, have minimal swelling, are stable long term, and are cytocompatible. It provides bioorthogonal HA gels over an uncommonly large range of stiffness (0.5-45 kPa), all forming within 1-15 min. More importantly, our approach offers a versatile one-pot procedure to independently tune the hydrogel composition (e.g., polymer and adhesive peptides). Using this platform, we investigate the independent effects of polymer type, stiffness, and adhesion on the secretory properties of human adipose-derived stromal cells (hASCs) and demonstrate that HA can enhance the secretion of immunomodulatory factors by hASCs.

4.
Pharmaceutics ; 15(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36678654

RESUMO

A drawback in the development of treatments that can reach the retina is the presence of barriers in the eye that restrain compounds from reaching the target. Intravitreal injections hold promise for retinal delivery, but the natural defenses in the vitreous can rapidly degrade or eliminate therapeutic molecules. Injectable hydrogel implants, which act as a reservoir, can allow for long-term drug delivery with a single injection into the eye, but still suffer due to the fast clearance of the released drugs when traversing the vitreous and random diffusion that leads to lower pharmaceutic efficacy. A combination with HA-covered nanoparticles, which can be released from the gel and more readily pass through the vitreous to increase the delivery of therapeutic agents to the retina, represents an advanced and elegant way to overcome some of the limitations in eye drug delivery. In this article, we developed hybrid PLGA-Dotap NPs that, due to their hyaluronic acid coating, can improve in vivo distribution throughout the vitreous and delivery to retinal cells. Moreover, a hydrogel implant was developed to act as a depot for the hybrid NPs to better control and slow their release. These results are a first step to improve the treatment of retinal diseases by protecting and transporting the therapeutic treatment across the vitreous and to improve treatment options by creating a depot system for long-term treatments.

5.
Epigenetics Chromatin ; 14(1): 35, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34321103

RESUMO

BACKGROUND: Centromeric regions of human chromosomes contain large numbers of tandemly repeated α-satellite sequences. These sequences are covered with constitutive heterochromatin which is enriched in trimethylation of histone H3 on lysine 9 (H3K9me3). Although well studied using artificial chromosomes and global perturbations, the contribution of this epigenetic mark to chromatin structure and genome stability remains poorly known in a more natural context. RESULTS: Using transcriptional activator-like effectors (TALEs) fused to a histone lysine demethylase (KDM4B), we were able to reduce the level of H3K9me3 on the α-satellites repeats of human chromosome 7. We show that the removal of H3K9me3 affects chromatin structure by increasing the accessibility of DNA repeats to the TALE protein. Tethering TALE-demethylase to centromeric repeats impairs the recruitment of HP1α and proteins of Chromosomal Passenger Complex (CPC) on this specific centromere without affecting CENP-A loading. Finally, the epigenetic re-writing by the TALE-KDM4B affects specifically the stability of chromosome 7 upon mitosis, highlighting the importance of H3K9me3 in centromere integrity and chromosome stability, mediated by the recruitment of HP1α and the CPC. CONCLUSION: Our cellular model allows to demonstrate the direct role of pericentromeric H3K9me3 epigenetic mark on centromere integrity and function in a natural context and opens interesting possibilities for further studies regarding the role of the H3K9me3 mark.


Assuntos
Centrômero , Cromatina , Cromatina/genética , Instabilidade Cromossômica , DNA , Epigênese Genética , Humanos , Histona Desmetilases com o Domínio Jumonji
6.
Genome Biol Evol ; 10(7): 1837-1851, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29860303

RESUMO

Alpha satellite is the major repeated DNA element of primate centromeres. Specific evolutionary mechanisms have led to a great diversity of sequence families with peculiar genomic organization and distribution, which have till now been studied mostly in great apes. Using high throughput sequencing of alpha satellite monomers obtained by enzymatic digestion followed by computational and cytogenetic analysis, we compare here the diversity and genomic distribution of alpha satellite DNA in two related Old World monkey species, Cercopithecus pogonias and Cercopithecus solatus, which are known to have diverged about 7 Ma. Two main families of monomers, called C1 and C2, are found in both species. A detailed analysis of our data sets revealed the existence of numerous subfamilies within the centromeric C1 family. Although the most abundant subfamily is conserved between both species, our fluorescence in situ hybridization (FISH) experiments clearly show that some subfamilies are specific for each species and that their distribution is restricted to a subset of chromosomes, thereby pointing to the existence of recurrent amplification/homogenization events. The pericentromeric C2 family is very abundant on the short arm of all acrocentric chromosomes in both species, pointing to specific mechanisms that lead to this distribution. Results obtained using two different restriction enzymes are fully consistent with a predominant monomeric organization of alpha satellite DNA that coexists with higher order organization patterns in the C. pogonias genome. Our study suggests a high dynamics of alpha satellite DNA in Cercopithecini, with recurrent apparition of new sequence variants and interchromosomal sequence transfer.


Assuntos
Centrômero/genética , Cercopithecus/genética , DNA Satélite/genética , Animais , Sequência de Bases , Cercopithecidae/genética , Sequência Consenso , Evolução Molecular , Hibridização in Situ Fluorescente , Cariótipo , Masculino , Repetições Minissatélites , Análise de Sequência de DNA
7.
Biochimie ; 149: 122-134, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29626498

RESUMO

Pericentromeric heterochromatin plays important roles in controlling gene expression and cellular differentiation. Fluorescent pyrrole-imidazole polyamides targeting murine pericentromeric DNA (major satellites) can be used for the visualization of pericentromeric heterochromatin foci in live mouse cells. New derivatives targeting human repeated DNA sequences (α-satellites) were synthesized and their interaction with target DNA was characterized. The possibility to use major satellite and α -satellite binding polyamides as tools for staining pericentromeric heterochromatin was further investigated in fixed and living mouse and human cells. The staining that was previously observed using the mouse model was further characterized and optimized, but remained limited regarding the fluorophores that can be used. The promising results regarding the staining in the mouse model could not be extended to the human model. Experiments performed in human cells showed chromosomal DNA staining without selectivity. Factors limiting the use of fluorescent polyamides, in particular probe aggregation in the cytoplasm, were investigated. Results are discussed with regards to structure and affinity of probes, density of target sites and chromatin accessibility in both models.


Assuntos
Rastreamento de Células/métodos , Cromatina/isolamento & purificação , Corantes Fluorescentes/química , Coloração e Rotulagem/métodos , Animais , Sítios de Ligação , Linhagem Celular , Cromatina/química , Humanos , Imidazóis/química , Camundongos , Nylons/química , Pirróis/química
8.
Mol Biol Cell ; 26(13): 2550-60, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25947134

RESUMO

The cell nucleus is a highly organized structure and plays an important role in gene regulation. Understanding the mechanisms that sustain this organization is therefore essential for understanding genome function. Centromeric regions (CRs) of chromosomes have been known for years to adopt specific nuclear positioning patterns, but the significance of this observation is not yet completely understood. Here, using a combination of fluorescence in situ hybridization and immunochemistry on fixed human cells and high-throughput imaging, we directly and quantitatively investigated the nuclear positioning of specific human CRs. We observe differential attraction of individual CRs toward both the nuclear border and the nucleoli, the former being enhanced in nonproliferating cells and the latter being enhanced in proliferating cells. Similar positioning patterns are observed in two different lymphoblastoid cell lines. Moreover, the positioning of CRs differs from that of noncentromeric regions, and CRs display specific orientations within chromosome territories. These results suggest the existence of not-yet-characterized mechanisms that drive the nuclear positioning of CRs and therefore pave the way toward a better understanding of how CRs affect nuclear organization.


Assuntos
Núcleo Celular/ultraestrutura , Centrômero/genética , Centrômero/metabolismo , Interfase/genética , Linfócitos/ultraestrutura , Linhagem Celular , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Nucléolo Celular/ultraestrutura , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proliferação de Células/fisiologia , Regulação da Expressão Gênica , Humanos , Imunoquímica , Hibridização in Situ Fluorescente , Interfase/fisiologia , Linfócitos/citologia , Linfócitos/metabolismo
9.
Chembiochem ; 16(4): 549-54, 2015 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-25639955

RESUMO

DNA imaging in living cells usually requires transgenic approaches that modify the genome. Synthetic pyrrole-imidazole polyamides that bind specifically to the minor groove of double-stranded DNA (dsDNA) represent an attractive approach for in-cell imaging that does not necessitate changes to the genome. Nine hairpin polyamides that target mouse major satellite DNA were synthesized. Their interactions with synthetic target dsDNA fragments were studied by thermal denaturation, gel-shift electrophoresis, circular dichroism, and fluorescence spectroscopy. The polyamides had different affinities for the target DNA, and fluorescent labeling of the polyamides affected their affinity for their targets. We validated the specificity of the probes in fixed cells and provide evidence that two of the probes detect target sequences in mouse living cell lines. This study demonstrates for the first time that synthetic compounds can be used for the visualization of the nuclear substructures formed by repeated DNA sequences in living cells.


Assuntos
DNA/química , Corantes Fluorescentes/química , Nylons/química , Sequências Repetitivas de Ácido Nucleico , Animais , Sequência de Bases , Camundongos , Microscopia de Fluorescência , Células NIH 3T3 , Imagem Óptica
10.
Methods Mol Biol ; 1228: 203-22, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25311132

RESUMO

The cell nucleus is a highly organized cellular organelle that contains the genome. An important step to understand the relationships between genome positioning and genome functions is to extract quantitative data from three-dimensional (3D) fluorescence imaging. However, such approaches are limited by the requirement for processing and analyzing large sets of images. Here we present a practical approach using TANGO (Tools for Analysis of Nuclear Genome Organization), an image analysis tool dedicated to the study of nuclear architecture. TANGO is a generic tool able to process large sets of images, allowing quantitative study of nuclear organization. In this chapter a practical description of the software is drawn in order to give an overview of its different concepts and functionalities. This description is illustrated with a precise example that can be performed step-by-step on experimental data provided on the website http://biophysique.mnhn.fr/tango/HomePage.


Assuntos
Núcleo Celular/genética , Imageamento Tridimensional/métodos , Microscopia de Fluorescência/métodos , Software , Centrômero/genética , Processamento de Imagem Assistida por Computador/métodos , Internet
11.
Cell Rep ; 9(2): 712-27, 2014 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-25310985

RESUMO

The appropriate trafficking of glutamate receptors to synapses is crucial for basic synaptic function and synaptic plasticity. It is now accepted that NMDA receptors (NMDARs) internalize and are recycled at the plasma membrane but also exchange between synaptic and extrasynaptic pools; these NMDAR properties are also key to governing synaptic plasticity. Scribble1 is a large PDZ protein required for synaptogenesis and synaptic plasticity. Herein, we show that the level of Scribble1 is regulated in an activity-dependent manner and that Scribble1 controls the number of NMDARs at the plasma membrane. Notably, Scribble1 prevents GluN2A subunits from undergoing lysosomal trafficking and degradation by increasing their recycling to the plasma membrane following NMDAR activation. Finally, we show that a specific YxxR motif on Scribble1 controls these mechanisms through a direct interaction with AP2. Altogether, our findings define a molecular mechanism to control the levels of synaptic NMDARs via Scribble1 complex signaling.


Assuntos
Complexo 2 de Proteínas Adaptadoras/metabolismo , Endossomos/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sítios de Ligação , Células Cultivadas , Dados de Sequência Molecular , Neurônios/metabolismo , Ligação Proteica , Transporte Proteico , Proteólise , Ratos , Ratos Sprague-Dawley , Proteínas Supressoras de Tumor/química
12.
PLoS One ; 9(8): e104999, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25127364

RESUMO

Peptide nucleic acids (PNAs) are very attractive antisense and antigene agents, but these molecules are not passively taken into cells. Here, using a functional cell assay and fluorescent-based methods, we investigated cell uptake and antisense activity of a tridecamer PNA that targets the HIV-1 polypurine tract sequence delivered using the arginine-rich (R/W)9 peptide (RRWWRRWRR). At micromolar concentrations, without use of any transfection agents, almost 80% inhibition of the target gene expression was obtained with the conjugate in the presence of the endosomolytic agent chloroquine. We show that chloroquine not only induced escape from endosomes but also enhanced the cellular uptake of the conjugate. Mechanistic studies revealed that (R/W)9-PNA conjugates were internalized via pinocytosis. Replacement of arginines with lysines reduced the uptake of the conjugate by six-fold, resulting in the abolition of intracellular target inhibition. Our results show that the arginines play a crucial role in the conjugate uptake and antisense activity. To determine whether specificity of the interactions of arginines with cell surface proteoglycans result in the internalization, we used flow cytometry to examine uptake of arginine- and lysine-rich conjugates in wild-type CHO-K1 and proteoglycan-deficient A745 cells. The uptake of both conjugates was decreased by four fold in CHO-745 cells; therefore proteoglycans promote internalization of cationic peptides, irrespective of the chemical nature of their positive charges. Our results show that arginine-rich cell-penetrating peptides, especially (R/W)9, are a promising tool for PNA internalization.


Assuntos
Marcação de Genes , HIV-1/genética , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/genética , Ácidos Nucleicos Peptídicos/administração & dosagem , Ácidos Nucleicos Peptídicos/genética , Sequência de Aminoácidos , Animais , Arginina/química , Arginina/metabolismo , Sequência de Bases , Células CHO , Linhagem Celular , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/metabolismo , Cricetulus , Endossomos/metabolismo , Glicosaminoglicanos/metabolismo , Infecções por HIV/virologia , Células HeLa , Humanos , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/farmacocinética , Ácidos Nucleicos Peptídicos/química , Ácidos Nucleicos Peptídicos/farmacocinética , Peptídeos , Pinocitose
13.
Bioinformatics ; 29(14): 1840-1, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23681123

RESUMO

MOTIVATION: The cell nucleus is a highly organized cellular organelle that contains the genetic material. The study of nuclear architecture has become an important field of cellular biology. Extracting quantitative data from 3D fluorescence imaging helps understand the functions of different nuclear compartments. However, such approaches are limited by the requirement for processing and analyzing large sets of images. RESULTS: Here, we describe Tools for Analysis of Nuclear Genome Organization (TANGO), an image analysis tool dedicated to the study of nuclear architecture. TANGO is a coherent framework allowing biologists to perform the complete analysis process of 3D fluorescence images by combining two environments: ImageJ (http://imagej.nih.gov/ij/) for image processing and quantitative analysis and R (http://cran.r-project.org) for statistical processing of measurement results. It includes an intuitive user interface providing the means to precisely build a segmentation procedure and set-up analyses, without possessing programming skills. TANGO is a versatile tool able to process large sets of images, allowing quantitative study of nuclear organization. AVAILABILITY: TANGO is composed of two programs: (i) an ImageJ plug-in and (ii) a package (rtango) for R. They are both free and open source, available (http://biophysique.mnhn.fr/tango) for Linux, Microsoft Windows and Macintosh OSX. Distribution is under the GPL v.2 licence. CONTACT: thomas.boudier@snv.jussieu.fr SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Núcleo Celular/ultraestrutura , Imageamento Tridimensional/métodos , Software , Núcleo Celular/genética , Genoma , Microscopia de Fluorescência
14.
J Neurosci ; 30(29): 9738-52, 2010 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-20660256

RESUMO

Scribble (Scrib) is a key regulator of apicobasal polarity, presynaptic architecture, and short-term synaptic plasticity in Drosophila. In mammals, its homolog Scrib1 has been implicated in cancer, neural tube closure, and planar cell polarity (PCP), but its specific role in the developing and adult nervous system is unclear. Here, we used the circletail mutant, a mouse model for PCP defects, to show that Scrib1 is located in spines where it influences actin cytoskeleton and spine morphing. In the hippocampus of these mutants, we observed an increased synapse pruning associated with an increased number of enlarged spines and postsynaptic density, and a decreased number of perforated synapses. This phenotype was associated with a mislocalization of the signaling pathway downstream of Scrib1, leading to an overall activation of Rac1 and defects in actin dynamic reorganization. Finally, Scrib1-deficient mice exhibit enhanced learning and memory abilities and impaired social behavior, two features relevant to autistic spectrum disorders. Our data identify Scrib1 as a crucial regulator of brain development and spine morphology, and suggest that Scrib1(crc/+) mice might be a model for studying synaptic dysfunction and human psychiatric disorders.


Assuntos
Encéfalo/crescimento & desenvolvimento , Hipocampo/citologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Aprendizagem/fisiologia , Memória/fisiologia , Plasticidade Neuronal/genética , Comportamento Social , Animais , Encéfalo/embriologia , Células COS , Células Cultivadas , Chlorocebus aethiops , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/ultraestrutura , Feminino , Hipocampo/embriologia , Masculino , Camundongos , Modelos Animais , Atividade Motora/fisiologia , Mutação , Técnicas de Patch-Clamp , Sinapses/fisiologia , Transmissão Sináptica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA