Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Methods ; 219: 16-21, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37683900

RESUMO

Use of cationic lipid vesicles (liposomes) can yield large amounts of nucleic acid entrapped inside the vesicles and/or bound to the external surface of the vesicles. To show a method to prepare asymmetric lipid vesicles (liposomes) with high amounts of entrapped nucleic acid is possible, symmetric and asymmetric lipid vesicles composed of mixtures of neutral (zwitterionic), anionic, and/or cationic phospholipids were formed in the presence of oligo DNA. For symmetric large unilamellar vesicles nucleic acid association with vesicles was roughly 100 times greater for vesicles with a net cationic charge than for vesicles having a net neutral or anionic net charge. A high degree of association between nucleic acid and lipid was also achieved using asymmetric large unilamellar vesicles with a net cationic charge in their inner leaflet, even when they had an anionic charge in their outer leaflet. In contrast, asymmetric vesicles in which only the outer leaflet had a net cationic charge had only low amounts of vesicle-associated nucleic acid, similar in amount to the amount of nucleic acid associated with asymmetric vesicles with an outer leaflet having a net anionic charge. These results indicate that in asymmetric vesicles with cationic lipid enriched inner leaflets nucleic acid is largely entrapped inside the vesicle lumen rather than bound to their external surface, and that asymmetric vesicles can be used to trap high amounts of nucleic acid even when using a lipid composition in the outer leaflet of a lipid vesicle that does not associate with nucleic acids. Such asymmetrically charged vesicles should have applications in studies of membrane protein-nucleic acid interactions as well as in studies of how membrane charge asymmetry can influence membrane protein structure, orientation, and function.


Assuntos
Lipossomos , Ácidos Nucleicos , Lipossomos/química , Lipossomas Unilamelares/química , Fosfolipídeos/química , Proteínas de Membrana , Bicamadas Lipídicas
2.
Biophys J ; 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37533258

RESUMO

Interleaflet coupling-the influence of one leaflet on the properties of the opposing leaflet-is a fundamental plasma membrane organizational principle. This coupling is proposed to participate in maintaining steady-state biophysical properties of the plasma membrane, which in turn regulates some transmembrane signaling processes. A prominent example is antigen (Ag) stimulation of signaling by clustering transmembrane receptors for immunoglobulin E (IgE), FcεRI. This transmembrane signaling depends on the stabilization of ordered regions in the inner leaflet for sorting of intracellular signaling components. The resting inner leaflet has a lipid composition that is generally less ordered than the outer leaflet and that does not spontaneously phase separate in model membranes. We propose that interleaflet coupling can mediate ordering and disordering of the inner leaflet, which is poised in resting cells to reorganize upon stimulation. To test this in live cells, we first established a straightforward approach to evaluate induced changes in membrane order by measuring inner leaflet diffusion of lipid probes by imaging fluorescence correlation spectroscopy, by imaging fluorescence correlation spectroscopy (ImFCS), before and after methyl-α-cyclodexrin (mαCD)-catalyzed exchange of outer leaflet lipids (LEX) with exogenous order- or disorder-promoting phospholipids. We examined the functional impact of LEX by monitoring two Ag-stimulated responses: recruitment of cytoplasmic Syk kinase to the inner leaflet and exocytosis of secretory granules (degranulation). Based on the ImFCS data in resting cells, we observed global increase or decrease of inner leaflet order when outer leaflet is exchanged with order- or disorder-promoting lipids, respectively. We find that the degree of both stimulated Syk recruitment and degranulation correlates positively with LEX-mediated changes of inner leaflet order in resting cells. Overall, our results show that resting-state lipid ordering of the outer leaflet influences the ordering of the inner leaflet, likely via interleaflet coupling. This imposed lipid reorganization modulates transmembrane signaling stimulated by Ag clustering of IgE-FcεRI.

3.
Biochim Biophys Acta Biomembr ; 1865(6): 184161, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37121365

RESUMO

Human islet amyloid polypeptide (hIAPP, also known as amylin) is a 37 amino acid pancreatic polypeptide hormone that plays a role in regulating glucose levels, but forms pancreatic amyloid in type-2 diabetes. The process of amyloid formation by hIAPP contributes to ß-cell death in the disease. Multiple mechanisms of hIAPP induced toxicity of ß-cells have been proposed including disruption of cellular membranes. However, the nature of hIAPP membrane interactions and the effect of ions and other molecules on hIAPP membrane interactions are not fully understood. Many studies have used model membranes with a high content of anionic lipids, often POPS, however the concentration of anionic lipids in the ß-cell plasma membrane is low. Here we study the concentration dependent effect of Ca2+ (0 to 50 mM) on hIAPP membrane interactions using large unilamellar vesicles (LUVs) with anionic lipid content ranging from 0 to 50 mol%. We find that Ca2+ does not effectively inhibit hIAPP amyloid formation and hIAPP induced membrane leakage from binary LUVs with a low percentage of POPS, but has a greater effect on LUVs with a high percentage of POPS. Mg2+ had very similar effects, and the effects of Ca2+ and Mg2+ can be largely rationalized by the neutralization of POPS charge. The implications for hIAPP-membrane interactions are discussed.


Assuntos
Diabetes Mellitus Tipo 2 , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Membrana Celular/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Amiloide/química , Lipídeos/farmacologia , Catálise
4.
Membranes (Basel) ; 12(9)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36135889

RESUMO

Lipid asymmetry, the difference in the lipid composition in the inner and outer lipid monolayers (leaflets) of a membrane, is an important feature of eukaryotic plasma membranes. Investigation of the biophysical consequences of lipid asymmetry has been aided by advances in the ability to prepare artificial asymmetric membranes, especially by use of cyclodextrin-catalyzed lipid exchange. This review summarizes recent studies with artificial asymmetric membranes which have identified conditions in which asymmetry can induce or suppress the ability of membranes to form ordered domains (rafts). A consequence of the latter effect is that, under some conditions, a loss of asymmetry can induce ordered domain formation. An analogous study in plasma membrane vesicles has demonstrated that asymmetry can also suppress domain formation in natural membranes. Thus, it is possible that a loss of asymmetry can induce domain formation in vivo.

5.
Biophys Rev ; 14(3): 655-678, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35791389

RESUMO

As a model of lipid rafts, the liquid-ordered (Lo) phase formed by sphingomyelin (SM) and cholesterol (Cho) in bilayer membranes has long attracted the attention of biophysics researchers. New approaches and methodologies have led to a better understanding of the molecular basis of the Lo domain structure. This review summarizes studies on model membrane systems consisting of SM/unsaturated phospholipid/Cho implying that the Lo phase contains SM-based nanodomains (or nano-subdomains). Some of the Lo phase properties may be attributed to these nanodomains. Several studies suggest that the nanodomains contain clustered SM molecules packed densely to form gel-phase-like subdomains of single-digit nanometer size at physiological temperatures. Cho and unsaturated lipids located in the Lo phase are likely to be concentrated at the boundaries between the subdomains. These subdomains are not readily detected in the Lo phase formed by saturated phosphatidylcholine (PC) molecules, suggesting that they are strongly stabilized by homophilic interactions specific to SM, e.g., between SM amide groups. This model for the Lo phase is supported by experiments using dihydro-SM, which is thought to have stronger homophilic interactions than SM, as well as by studies using the enantiomer of SM having opposite stereochemistry to SM at the 2 and 3 positions and by some molecular dynamics (MD) simulations of lipid bilayers containing Lo-lipids. Nanosized gel subdomains seem to play an important role in controlling membrane organization and function in biological membranes.

7.
J Phys Chem B ; 126(12): 2325-2336, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35294838

RESUMO

Plasma membranes host numerous receptors, sensors, and ion channels involved in cellular signaling. Phase separation within the plasma membrane has emerged as a key biophysical regulator of signaling reactions in multiple physiological and pathological contexts. There is much evidence that plasma membrane composition supports the coexistence of liquid-ordered (Lo) and liquid-disordered (Ld) phases or domains at physiological conditions. However, this phase/domain separation is nanoscopic and transient in live cells. It has been recently proposed that transbilayer coupling between the inner and outer leaflets of the plasma membrane is driven by their asymmetric lipid distribution and by dynamic cytoskeleton-lipid composites that contribute to the formation and transience of Lo/Ld phase separation in live cells. In this Perspective, we highlight new approaches to investigate how transbilayer coupling may influence phase separation. For quantitative evaluation of the impact of these interactions, we introduce an experimental strategy centered around Imaging Fluorescence Correlation Spectroscopy (ImFCS), which measures membrane diffusion with very high precision. To demonstrate this strategy, we choose two well-established model systems for transbilayer interactions: cross-linking by multivalent antigen of immunoglobulin E bound to receptor FcεRI and cross-linking by cholera toxin B of GM1 gangliosides. We discuss emerging methods to systematically perturb membrane lipid composition, particularly exchange of outer leaflet lipids with exogenous lipids using methyl alpha cyclodextrin. These selective perturbations may be quantitatively evaluated with ImFCS and other high-resolution biophysical tools to discover novel principles of lipid-mediated phase separation in live cells in the context of their pathophysiological relevance.


Assuntos
Lipídeos de Membrana , Membrana Celular/química , Difusão , Lipídeos de Membrana/metabolismo , Espectrometria de Fluorescência
8.
J Lipid Res ; 63(1): 100155, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34843684

RESUMO

In some cases, lipids in one leaflet of an asymmetric artificial lipid vesicle suppress the formation of ordered lipid domains (rafts) in the opposing leaflet. Whether this occurs in natural membranes is unknown. Here, we investigated this issue using plasma membrane vesicles (PMVs) from rat leukemia RBL-2H3 cells. Membrane domain formation and order was assessed by fluorescence resonance energy transfer and fluorescence anisotropy. We found that ordered domains in PMVs prepared from cells by N-ethyl maleimide (NEM) treatment formed up to ∼37°C, whereas ordered domains in symmetric vesicles formed from the extracted PMV lipids were stable up to 55°C, indicating the stability of ordered domains was substantially decreased in intact PMVs. This behavior paralleled lesser ordered domain stability in artificial asymmetric lipid vesicles relative to the corresponding symmetric vesicles, suggesting intact PMVs exhibit some degree of lipid asymmetry. This was supported by phosphatidylserine mislocalization on PMV outer leaflets as judged by annexin binding, which indicated NEM-induced PMVs are much more asymmetric than PMVs formed by dithiothreitol/paraformaldehyde treatment. Destroying asymmetry by reconstitution of PMVs using detergent dilution also showed stabilization of domain formation, even though membrane proteins remained associated with reconstituted vesicles. Similar domain stabilization was observed in artificial asymmetric lipid vesicles after destroying asymmetry via detergent reconstitution. Proteinase K digestion of proteins had little effect on domain stability in NEM PMVs. We conclude that loss of PMV lipid asymmetry can induce ordered domain formation. The dynamic control of lipid asymmetry in cells may regulate domain formation in plasma membranes.


Assuntos
Lipídeos de Membrana
9.
Biochim Biophys Acta Biomembr ; 1864(1): 183774, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34534531

RESUMO

Methods for efficient cyclodextrin-induced lipid exchange have been developed in our lab. These make it possible to almost completely replace the lipids in the outer leaflet of artificial membranes or the plasma membranes of living cells with exogenous lipids. Lipid replacement/substitution allows detailed studies of how lipid composition and asymmetry influence the structure and function of membrane domains and membrane proteins. In this review, we both summarize progress on cyclodextrin exchange in cells, mainly by the use of methyl-alpha cyclodextrin to exchange phospholipids and sphingolipids, and discuss the issues to consider when carrying out lipid exchange experiments upon cells. Issues that impact interpretation of lipid exchange are also discussed. This includes how overly naïve interpretation of how lipid exchange-induced changes in domain formation can impact protein function.


Assuntos
Lipídeos de Membrana/genética , Microdomínios da Membrana/genética , Fosfolipídeos/genética , alfa-Ciclodextrinas/química , Metabolismo dos Lipídeos/genética , Lipídeos de Membrana/química , Microdomínios da Membrana/química , Proteínas de Membrana/química , Proteínas de Membrana/genética , Mutação de Sentido Incorreto/genética , Fosfolipídeos/química
10.
J Biol Chem ; 297(6): 101411, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34793834

RESUMO

Cryptococcus neoformans is a fungal pathogen that causes life-threatening meningoencephalitis in lymphopenic patients. Pulmonary macrophages comprise the first line of host defense upon inhalation of fungal spores by aiding in clearance but can also potentially serve as a niche for their dissemination. Given that macrophages play a key role in the outcome of a cryptococcal infection, it is crucial to understand factors that mediate phagocytosis of C. neoformans. Since lipid rafts (high-order plasma membrane domains enriched in cholesterol and sphingomyelin [SM]) have been implicated in facilitating phagocytosis, we evaluated whether these ordered domains govern macrophages' ability to phagocytose C. neoformans. We found that cholesterol or SM depletion resulted in significantly deficient immunoglobulin G (IgG)-mediated phagocytosis of fungus. Moreover, repletion of macrophage cells with a raft-promoting sterol (7-dehydrocholesterol) rescued this phagocytic deficiency, whereas a raft-inhibiting sterol (coprostanol) significantly decreased IgG-mediated phagocytosis of C. neoformans. Using a photoswitchable SM (AzoSM), we observed that the raft-promoting conformation (trans-AzoSM) resulted in efficient phagocytosis, whereas the raft-inhibiting conformation (cis-AzoSM) significantly but reversibly blunted phagocytosis. We observed that the effect on phagocytosis may be facilitated by Fcγ receptor (FcγR) function, whereby IgG immune complexes crosslink to FcγRIII, resulting in tyrosine phosphorylation of FcR γ-subunit (FcRγ), an important accessory protein in the FcγR signaling cascade. Correspondingly, cholesterol or SM depletion resulted in decreased FcRγ phosphorylation. Repletion with 7-dehydrocholesterol restored phosphorylation, whereas repletion with coprostanol showed FcRγ phosphorylation comparable to unstimulated cells. Together, these data suggest that lipid rafts are critical for facilitating FcγRIII-mediated phagocytosis of C. neoformans.


Assuntos
Anticorpos Antifúngicos/metabolismo , Colesterol/metabolismo , Cryptococcus neoformans/metabolismo , Imunoglobulina G/metabolismo , Macrófagos Alveolares/metabolismo , Fagocitose , Receptores de IgG/metabolismo , Esfingomielinas/metabolismo , Animais , Linhagem Celular , Microdomínios da Membrana/metabolismo , Camundongos
11.
Langmuir ; 37(39): 11611-11617, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34550698

RESUMO

The natural asymmetry of cellular membranes influences their properties. In recent years, methodologies for preparing asymmetric vesicles have been developed that rely on cyclodextrin-catalyzed exchange of lipids between donor lipid multilamellar vesicles and acceptor lipid unilamellar vesicles, and the subsequent separation of the, now asymmetric, acceptor vesicles from the donors. Isolation is often accomplished by preloading acceptor vesicles with a high concentration of sucrose, typically 25% (w/w), and separating from donor and cyclodextrin by sucrose gradient centrifugation. We found that when the asymmetric vesicles prepared using methyl-α-cyclodextrin exchange were dispersed under hypotonic conditions using physiological salt solutions, there was enhanced leakage of an entrapped probe, 6-carboxyfluorescein. Studies with symmetric vesicles showed this was due to osmotic pressure and was specific to hypotonic solutions. Inclusion of cholesterol partly reduced leakage but did not completely eliminate it. To avoid having to use hypotonic conditions or to suspend vesicles at nonphysiological solute concentrations to minimize leakage, a method for preparing asymmetric vesicles using acceptor vesicle-entrapped CsCl at a physiological ion concentration (100 mM) was developed. Asymmetric vesicles prepared with the entrapped CsCl protocol were highly resistant to 6-carboxyfluorescein leakage out of the vesicles.


Assuntos
Lipossomas Unilamelares , Membrana Celular , Concentração Osmolar , Osmose , Pressão Osmótica
12.
J Biol Chem ; 297(3): 101010, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34324831

RESUMO

Insulin receptor (IR) is a membrane tyrosine kinase that mediates the response of cells to insulin. IR activity has been shown to be modulated by changes in plasma membrane lipid composition, but the properties and structural determinants of lipids mediating IR activity are poorly understood. Here, using efficient methyl-alpha-cyclodextrin mediated lipid exchange, we studied the effect of altering plasma membrane outer leaflet phospholipid composition upon the activity of IR in mammalian cells. After substitution of endogenous lipids with lipids having an ability to form liquid ordered (Lo) domains (sphingomyelins) or liquid disordered (Ld) domains (unsaturated phosphatidylcholines (PCs)), we found that the propensity of lipids to form ordered domains is required for high IR activity. Additional substitution experiments using a series of saturated PCs showed that IR activity increased substantially with increasing acyl chain length, which increases both bilayer width and the propensity to form ordered domains. Incorporating purified IR into alkyl maltoside micelles with increasing hydrocarbon lengths also increased IR activity, but more modestly than by increasing lipid acyl chain length in cells. These results suggest that the ability to form Lo domains as well as wide bilayer width contributes to increased IR activity. Inhibition of phosphatases showed that some of the lipid dependence of IR activity upon lipid structure reflected protection from phosphatases by lipids that support Lo domain formation. These results are consistent with a model in which a combination of bilayer width and ordered domain formation modulates IR activity via IR conformation and accessibility to phosphatases.


Assuntos
Bicamadas Lipídicas/metabolismo , Microdomínios da Membrana/metabolismo , Fosfolipídeos/metabolismo , Receptor de Insulina/metabolismo , Animais , Células CHO , Cricetulus
13.
Biochemistry ; 60(25): 1964-1970, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34128641

RESUMO

The fluorescent dye 1,6-diphenyl-1,3,5-hexatriene (DPH) is widely used as a probe of membrane order. We show that DPH also interacts with amyloid fibrils formed by human amylin (h-amylin, also known as islet amyloid polypeptide) in solution, and this results in a 100-fold increase in DPH fluorescence for a sample of 20 µM h-amylin and 0.25 µM DPH. No increase in DPH fluorescence is observed with the non-amyloidogenic rat amylin or with freshly dissolved, nonfibrillar h-amylin. The time course of amyloid formation by amylin was followed by monitoring the fluorescence of added DPH as a function of time and was similar to that monitored by the standard fluorescent probe thioflavin-T. The inclusion of DPH in the buffer did not perturb the time course of amyloid formation under the conditions examined, and the time course was independent of the range of DPH concentrations tested (0.25-5 µM). The maximum final fluorescence intensity is observed at substoichiometric ratios of DPH to amylin. No significant increase in fluorescence was observed during the lag phase of amyloid formation, and the implications for the structure of amylin prefibril oligomers are discussed. h-Amylin contains three aromatic residues. A triple aromatic to leucine mutant forms amyloid, and DPH binds to the resulting fibrils, indicating that interactions with aromatic side chains are not required for DPH-amylin amyloid interactions. DPH may be especially useful for studies of mutant amylins and other polypeptides in which changes in charged residues might complicate interpretation of thioflavin-T fluorescence.


Assuntos
Difenilexatrieno/metabolismo , Corantes Fluorescentes/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Sequência de Aminoácidos , Animais , Fluorescência , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Cinética , Ligação Proteica , Multimerização Proteica , Ratos
14.
Methods Enzymol ; 649: 253-276, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33712189

RESUMO

Studying the interaction of pore-forming toxins, including perfringolysin O (PFO), with lipid is crucial to understanding how they insert into membranes, assemble, and associate with membrane domains. In almost all past studies, symmetric lipid bilayers, i.e., bilayers having the same lipid composition in each monolayer (leaflet), have been used to study this process. However, practical methods to make asymmetric lipid vesicles have now been developed. These involve a cyclodextrin-catalyzed lipid exchange process in which the outer leaflet lipids are switched between two lipid vesicle populations with different lipid compositions. By use of alpha class cyclodextrins, it is practical to include a wide range of sterol concentrations in asymmetric vesicles. In this article, protocols for preparing asymmetric lipid vesicles are described, and to illustrate how they may be applied to studies of pore-forming toxin behavior, we summarize what has been learned about PFO conformation and its lipid interaction in symmetric and in asymmetric artificial lipid vesicles.


Assuntos
Toxinas Bacterianas , Proteínas Hemolisinas , Bicamadas Lipídicas , Esteróis
15.
Langmuir ; 36(42): 12521-12531, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33070610

RESUMO

We have developed cyclodextrin-catalyzed lipid exchange methods to prepare large unilamellar vesicles (LUVs) with asymmetric charge distributions, i.e., with different net charges on the lipids in the inner and outer leaflets. LUVs contained a mixture of a zwitterionic lipid (phosphatidylcholine), cholesterol, and various cationic lipids (O-ethyl phosphatidylcholine or dioleoyl-3-trimethylammonium propane) or anionic lipids (phosphatidylglycerol, phosphatidylserine, or phosphatidic acid). Symmetric and asymmetric LUVs with a wide variety of lipid combinations were prepared. The asymmetric LUVs contained cationic or anionic outer leaflets and inner leaflets that had either the opposite charge or were uncharged. The behavior of symmetric LUVs prepared with zwitterionic, anionic, or cationic leaflets was compared to those of asymmetric LUVs. Lipid exchange was confirmed by quantitative thin-layer chromatography, and lipid asymmetry by a novel assay measuring binding of a cationic fluorescent probe to the LUV outer leaflet. For both symmetric and asymmetric LUVs, the level of entrapment of the cationic drug doxorubicin was controlled by the charge on the inner leaflet, with the greatest entrapment and slowest leakage in vesicles with an anionic inner leaflet. This shows that it is possible to choose inner leaflet lipids to maximize liposomal loading of charged drugs independently of the identity of outer-leaflet lipids. This implies that it should also be possible to independently vary outer-leaflet lipids to, for example, impart favorable bioavailability and biodistribution properties to lipid vesicles.


Assuntos
Lipossomos , Lipossomas Unilamelares , Ânions , Cátions , Fosfatidilcolinas , Distribuição Tecidual
16.
Biophys J ; 119(3): 483-492, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32710822

RESUMO

How lipid asymmetry impacts ordered lipid domain (raft) formation may yield important clues to how ordered domain formation is regulated in vivo. Under some conditions, a sphingomyelin (SM) and cholesterol-rich ordered domain in one leaflet induces ordered domain formation in the corresponding region of an opposite leaflet composed of unsaturated phosphatidylcholine (PC) and cholesterol. In other conditions, the formation of ordered domains in a SM and cholesterol-rich leaflet can be suppressed by an opposite leaflet containing unsaturated PC and cholesterol. To explore how PC unsaturation influences the balance between these behaviors, domain formation was studied in asymmetric and symmetric lipid vesicles composed of egg SM, cholesterol, and either unsaturated dioleoyl PC (DOPC) or 1-palmitoyl 2-oleoyl PC (POPC). The temperature dependence of ordered domain formation was measured using Förster resonance energy transfer, which detects nanodomains as well as large domains. In cholesterol-containing asymmetric SM+PC outside/PC inside vesicles, the PC-containing inner leaflet tended to destabilize ordered domain formation in the SM+PC-containing outer leaflet relative to ordered domain stability in cholesterol-containing symmetric SM/PC vesicles. Residual ordered domain formation was detected in cholesterol-containing asymmetric SM+DOPC outside/DOPC inside vesicles, but ordered domain formation was completely or almost completely suppressed by asymmetry in cholesterol-containing SM+POPC outside/POPC inside vesicles over the entire temperature range measured. Suppression of ordered domain formation in the latter vesicles was confirmed by fluorescence anisotropy measurements. Because mixtures of SM, POPC, and cholesterol form domains in symmetric vesicles, and this lipid composition mimics plasma membranes to a significant degree, it is possible that under some conditions in vivo the loss of lipid asymmetry could trigger ordered domain formation.


Assuntos
Microdomínios da Membrana , Fosfatidilcolinas , Membrana Celular , Colesterol , Transferência Ressonante de Energia de Fluorescência , Bicamadas Lipídicas , Esfingomielinas
17.
Biophys J ; 119(3): 539-552, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32710823

RESUMO

Sphingomyelin (SM), a major component of small domains (or lipid rafts) in mammalian cell membranes, forms a liquid-ordered phase in the presence of cholesterol (Cho). However, the nature of molecular interactions within the ordered SM/Cho phase remains elusive. We previously revealed that stearoyl-SM (SSM) and its enantiomer (ent-SSM) separately form nano-subdomains within the liquid-ordered phase involving homophilic SSM-SSM and ent-SSM-ent-SSM interactions. In this study, the details of the subdomain formation by SSMs at the nanometer range were examined using Förster resonance energy transfer (FRET) measurements in lipid bilayers containing SSM and ent-SSM, dioleoyl-phosphatidylcholine and Cho. Although microscopy detected a stereochemical effect on partition coefficient favoring stereochemically homophilic interactions in the liquid-ordered state, it showed no significant difference in large-scale liquid-ordered domain formation by the two stereoisomers. In contrast to the uniform domains seen microscopy, FRET analysis using fluorescent donor- and acceptor-labeled SSM showed distinct differences in SM and ent-SM colocalization within nanoscale distances. Donor- and acceptor-labeled SSM showed significantly higher FRET efficiency than did donor-labeled SSM and acceptor-labeled ent-SSM in lipid vesicles composed of "racemic" (1:1) mixtures of SSM/ent-SSM with dioleoylphosphatidylcholine and Cho. The difference in FRET efficiency indicated that SSM and ent-SSM assemble to form separate nano-subdomains. The average size of the subdomains decreased as temperature increased, and at physiological temperatures, the subdomains were found to have a single-digit nanometer radius. These results suggest that (even in the absence of ent-SM) SM-SM interactions play a crucial role in forming nano-subdomains within liquid-ordered domains and may be a key feature of lipid microdomains (or rafts) in biological membranes.


Assuntos
Fosfatidilcolinas , Esfingomielinas , Animais , Membrana Celular , Colesterol , Bicamadas Lipídicas , Microdomínios da Membrana
18.
J Lipid Res ; 61(5): 758-766, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31964764

RESUMO

The formation and properties of liquid-ordered (Lo) lipid domains (rafts) in the plasma membrane are still poorly understood. This limits our ability to manipulate ordered lipid domain-dependent biological functions. Giant plasma membrane vesicles (GPMVs) undergo large-scale phase separations into coexisting Lo and liquid-disordered lipid domains. However, large-scale phase separation in GPMVs detected by light microscopy is observed only at low temperatures. Comparing Förster resonance energy transfer-detected versus light microscopy-detected domain formation, we found that nanodomains, domains of nanometer size, persist at temperatures up to 20°C higher than large-scale phases, up to physiologic temperature. The persistence of nanodomains at higher temperatures is consistent with previously reported theoretical calculations. To investigate the sensitivity of nanodomains to lipid composition, GPMVs were prepared from mammalian cells in which sterol, phospholipid, or sphingolipid composition in the plasma membrane outer leaflet had been altered by cyclodextrin-catalyzed lipid exchange. Lipid substitutions that stabilize or destabilize ordered domain formation in artificial lipid vesicles had a similar effect on the thermal stability of nanodomains and large-scale phase separation in GPMVs, with nanodomains persisting at higher temperatures than large-scale phases for a wide range of lipid compositions. This indicates that it is likely that plasma membrane nanodomains can form under physiologic conditions more readily than large-scale phase separation. We also conclude that membrane lipid substitutions carried out in intact cells are able to modulate the propensity of plasma membranes to form ordered domains. This implies lipid substitutions can be used to alter biological processes dependent upon ordered domains.


Assuntos
Metabolismo dos Lipídeos , Microdomínios da Membrana/química , Microdomínios da Membrana/metabolismo , Nanoestruturas , Temperatura , Animais , Células CHO , Linhagem Celular Tumoral , Cricetulus , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Ratos , Esfingolipídeos/química , Esfingolipídeos/metabolismo
19.
PLoS One ; 14(10): e0223572, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31589646

RESUMO

We recently introduced a MαCD-based method to efficiently replace virtually the entire population of plasma membrane outer leaflet phospholipids and sphingolipids of cultured mammalian cells with exogenous lipids (Li et al, (2016) Proc. Natl. Acad. Sci USA 113:14025-14030). Here, we show if the lipid-to- MαCD ratio is too high or low, cells can round up and develop membrane leakiness. We found that this cell damage can be reversed/prevented if cells are allowed to recover from the exchange step by incubation in complete growth medium. After exchange and transfer to complete growth medium cell growth was similar to that of untreated cells. In some cases, cell damage was also prevented by carrying out exchange at close to room temperature (rather than at 37°C). Exchange with lipids that do (sphingomyelin) or do not (unsaturated phosphatidylcholine) support a high level of membrane order in lipid vesicles had the analogous effect on plasma membrane order, confirming exogenous lipid localization in the plasma membrane. Importantly, changes in lipid composition and plasma membrane properties after exchange and recovery persisted for several hours. Thus, it should be possible to use lipid exchange to investigate the effect of plasma membrane lipid composition upon several aspects of membrane structure and function.


Assuntos
Membrana Celular/efeitos dos fármacos , Fosfatidilcolinas/metabolismo , Esfingomielinas/metabolismo , beta-Ciclodextrinas/farmacologia , Animais , Células CHO , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Cricetinae , Cricetulus , Humanos , Gotículas Lipídicas/metabolismo , Coelhos
20.
Biophys J ; 117(6): 1009-1011, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31477242
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA