RESUMO
Sphingolipids (SLs) are essential lipids with important functions in membrane formation and cell signaling. The presence of a long chain base (LCB) structure is common to all SLs. De novo SL synthesis is initiated by the enzyme serine-palmitoyltransferase (SPT), which forms an LCB by the conjugation from serine and fatty acyl-CoAs. SPT can metabolize a variety of acyl-CoA substrates, which form diverse LCB structures within and across species. The LCB then undergoes further metabolic modifications resulting in an extraordinarily diverse spectrum of sphingolipids formed. SL analysis, using liquid chromatography-mass spectrometry (LC-MS)-based methods, poses challenges due to the diverse range of frequently isobaric species. This complexity complicates the identification of underlying LCB structures using standard lipidomics approaches. Here, we describe a simplified method to analyze the LCB profile in cells, tissue, and blood. The procedure involves chemical hydrolysis to remove the conjugated headgroups and N-acyl chains, allowing to specifically resolve the underlying LCB structures by LC-MS. This method can also be combined with an isotope labeling approach to determine in vivo SPT activity and total SL de novo synthesis over time.
Assuntos
Esfingolipídeos , Cromatografia Líquida/métodos , Esfingolipídeos/metabolismo , Esfingolipídeos/análise , Esfingolipídeos/química , Lipidômica/métodos , Espectrometria de Massas/métodos , Animais , Humanos , Serina C-Palmitoiltransferase/metabolismo , Acil Coenzima A/metabolismo , Espectrometria de Massas em Tandem/métodosRESUMO
Lipid transfer proteins (LTPs) are key players in cellular homeostasis and regulation, as they coordinate the exchange of lipids between different cellular organelles. Despite their importance, our mechanistic understanding of how LTPs function at the molecular level is still in its infancy, mostly due to the large number of existing LTPs and to the low degree of conservation at the sequence and structural level. In this work, we use molecular simulations to characterize a representative dataset of lipid transport domains (LTDs) of 12 LTPs that belong to 8 distinct families. We find that despite no sequence homology nor structural conservation, the conformational landscape of LTDs displays common features, characterized by the presence of at least 2 main conformations whose populations are modulated by the presence of the bound lipid. These conformational properties correlate with their mechanistic mode of action, allowing for the interpretation and design of experimental strategies to further dissect their mechanism. Our findings indicate the existence of a conserved, fold-independent mechanism of lipid transfer across LTPs of various families and offer a general framework for understanding their functional mechanism.
Assuntos
Proteínas de Transporte , Conformação Proteica , Proteínas de Transporte/metabolismo , Proteínas de Transporte/química , Simulação de Dinâmica Molecular , Humanos , Metabolismo dos Lipídeos , Domínios Proteicos , Transporte BiológicoRESUMO
BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of the upper and lower motor neurons with varying ages of onset, progression and pathomechanisms. Monogenic childhood-onset ALS, although rare, forms an important subgroup of ALS. We recently reported specific SPTLC1 variants resulting in sphingolipid overproduction as a cause for juvenile ALS. Here, we report six patients from six independent families with a recurrent, de novo, heterozygous variant in SPTLC2 c.778G>A [p.Glu260Lys] manifesting with juvenile ALS. METHODS: Clinical examination of the patients along with ancillary and genetic testing, followed by biochemical investigation of patients' blood and fibroblasts, was performed. RESULTS: All patients presented with early-childhood-onset progressive weakness, with signs and symptoms of upper and lower motor neuron degeneration in multiple myotomes, without sensory neuropathy. These findings were supported on ancillary testing including nerve conduction studies and electromyography, muscle biopsies and muscle ultrasound studies. Biochemical investigations in plasma and fibroblasts showed elevated levels of ceramides and unrestrained de novo sphingolipid synthesis. Our studies indicate that SPTLC2 variant [c.778G>A, p.Glu260Lys] acts distinctly from hereditary sensory and autonomic neuropathy (HSAN)-causing SPTLC2 variants by causing excess canonical sphingolipid biosynthesis, similar to the recently reported SPTLC1 ALS associated pathogenic variants. Our studies also indicate that serine supplementation, which is a therapeutic in SPTLC1 and SPTCL2-associated HSAN, is expected to exacerbate the excess sphingolipid synthesis in serine palmitoyltransferase (SPT)-associated ALS. CONCLUSIONS: SPTLC2 is the second SPT-associated gene that underlies monogenic, juvenile ALS and further establishes alterations of sphingolipid metabolism in motor neuron disease pathogenesis. Our findings also have important therapeutic implications: serine supplementation must be avoided in SPT-associated ALS, as it is expected to drive pathogenesis further.
Assuntos
Esclerose Lateral Amiotrófica , Neuropatias Hereditárias Sensoriais e Autônomas , Doenças Neurodegenerativas , Criança , Humanos , Esclerose Lateral Amiotrófica/genética , Esfingolipídeos , Serina C-Palmitoiltransferase/genética , Serina C-Palmitoiltransferase/metabolismo , Neuropatias Hereditárias Sensoriais e Autônomas/genética , SerinaRESUMO
BACKGROUND: Amyotrophic lateral sclerosis (ALS) leads to paralysis and death by progressive degeneration of motor neurons. Recently, specific gain-of-function mutations in SPTLC1 were identified in patients with juvenile form of ALS. SPTLC2 encodes the second catalytic subunit of the serine-palmitoyltransferase (SPT) complex. METHODS: We used the GENESIS platform to screen 700 ALS whole-genome and whole-exome data sets for variants in SPTLC2. The de-novo status was confirmed by Sanger sequencing. Sphingolipidomics was performed using liquid chromatography and high-resolution mass spectrometry. RESULTS: Two unrelated patients presented with early-onset progressive proximal and distal muscle weakness, oral fasciculations, and pyramidal signs. Both patients carried the novel de-novo SPTLC2 mutation, c.203T>G, p.Met68Arg. This variant lies within a single short transmembrane domain of SPTLC2, suggesting that the mutation renders the SPT complex irresponsive to regulation through ORMDL3. Confirming this hypothesis, ceramide and complex sphingolipid levels were significantly increased in patient plasma. Accordingly, excessive sphingolipid production was shown in mutant-expressing human embryonic kindney (HEK) cells. CONCLUSIONS: Specific gain-of-function mutations in both core subunits affect the homoeostatic control of SPT. SPTLC2 represents a new Mendelian ALS gene, highlighting a key role of dysregulated sphingolipid synthesis in the pathogenesis of juvenile ALS. Given the direct interaction of SPTLC1 and SPTLC2, this knowledge might open new therapeutic avenues for motor neuron diseases.
Assuntos
Esclerose Lateral Amiotrófica , Serina C-Palmitoiltransferase , Humanos , Esclerose Lateral Amiotrófica/genética , Ceramidas , Mutação com Ganho de Função , Mutação/genética , Serina C-Palmitoiltransferase/genética , Serina C-Palmitoiltransferase/química , EsfingolipídeosRESUMO
Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neuromuscular disease. Recently, several gain-of-function mutations in SPTLC1 were associated with juvenile ALS. SPTLC1 encodes for a subunit of the serine-palmitoyltransferase (SPT) - the rate-limiting enzyme in the de novo synthesis of sphingolipids (SL). SPT activity, and thus SL de novo synthesis, is tightly controlled by a homeostatic feedback mechanism mediated by ORMDL proteins. Here we report a novel SPTLC1p.L38R mutation in a young Chinese girl with a signature of juvenile ALS. The patient presented with muscular weakness and atrophy, tongue tremor and fasciculation, breathing problems and positive pyramidal signs. All SPTLC1-ALS mutations including the SPTLC1 p.L38R are located within a single membrane-spanning domain of the protein and impede the interaction with the regulatory ORMDL subunit of SPT. Pertinent to the altered homeostatic control, lipid analysis showed overall increased SL levels in the patient plasma. An increased SPT activity and SL de novo synthesis was confirmed in p.L38R expressing HEK293 cells. Particularily dihydro-sphingolipids (dhSL) were signficantly increased in patient plasma and p.L38R mutant expressing cells. Increased dhSL formation has been previously linked to neurotoxicity and may be involved in the pathomechanism of SPTLC1-ALS mutations.
Assuntos
Esclerose Lateral Amiotrófica , Feminino , Humanos , Criança , Esclerose Lateral Amiotrófica/genética , Células HEK293 , Esfingolipídeos/metabolismo , Mutação , Serina C-Palmitoiltransferase/genética , Serina C-Palmitoiltransferase/metabolismoRESUMO
Neural differentiation, synaptic transmission, and action potential propagation depend on membrane sphingolipids, whose metabolism is tightly regulated. Mutations in the ceramide transporter CERT (CERT1), which is involved in sphingolipid biosynthesis, are associated with intellectual disability, but the pathogenic mechanism remains obscure. Here, we characterize 31 individuals with de novo missense variants in CERT1. Several variants fall into a previously uncharacterized dimeric helical domain that enables CERT homeostatic inactivation, without which sphingolipid production goes unchecked. The clinical severity reflects the degree to which CERT autoregulation is disrupted, and inhibiting CERT pharmacologically corrects morphological and motor abnormalities in a Drosophila model of the disease, which we call ceramide transporter (CerTra) syndrome. These findings uncover a central role for CERT autoregulation in the control of sphingolipid biosynthetic flux, provide unexpected insight into the structural organization of CERT, and suggest a possible therapeutic approach for patients with CerTra syndrome.
Assuntos
Ceramidas , Esfingolipídeos , Humanos , Ceramidas/metabolismo , Homeostase , Mutação , Esfingolipídeos/genética , Esfingolipídeos/metabolismoRESUMO
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that affects motor neurons. Mutations in the SPTLC1 subunit of serine palmitoyltransferase (SPT), which catalyzes the first step in the de novo synthesis of sphingolipids (SLs), cause childhood-onset ALS. SPTLC1-ALS variants map to a transmembrane domain that interacts with ORMDL proteins, negative regulators of SPT activity. We show that ORMDL binding to the holoenzyme complex is impaired in cells expressing pathogenic SPTLC1-ALS alleles, resulting in increased SL synthesis and a distinct lipid signature. C-terminal SPTLC1 variants cause peripheral hereditary sensory and autonomic neuropathy type 1 (HSAN1) due to the synthesis of 1-deoxysphingolipids (1-deoxySLs) that form when SPT metabolizes L-alanine instead of L-serine. Limiting L-serine availability in SPTLC1-ALS-expressing cells increased 1-deoxySL and shifted the SL profile from an ALS to an HSAN1-like signature. This effect was corroborated in an SPTLC1-ALS pedigree in which the index patient uniquely presented with an HSAN1 phenotype, increased 1-deoxySL levels, and an L-serine deficiency. These data demonstrate how pathogenic variants in different domains of SPTLC1 give rise to distinct clinical presentations that are nonetheless modifiable by substrate availability.
Assuntos
Esclerose Lateral Amiotrófica , Neuropatias Hereditárias Sensoriais e Autônomas , Proteínas de Membrana/metabolismo , Doenças Neurodegenerativas , Esclerose Lateral Amiotrófica/genética , Neuropatias Hereditárias Sensoriais e Autônomas/genética , Humanos , Serina/química , Serina C-Palmitoiltransferase/química , Serina C-Palmitoiltransferase/genética , Esfingolipídeos/genética , Esfingolipídeos/metabolismoRESUMO
Sphingolipids (SL) are a class of chemically diverse lipids that have important structural and physiological functions in eukaryotic cells. SL entail a long chain base (LCB) as the common structural element, which is typically formed by the condensation of L-serine and long chain acyl-CoA. This condensation is the first and the rate-limiting step in the de novo SL synthesis and catalyzed by the enzyme serine palmitoyltransferase (SPT). Although palmitoyl-CoA is the preferred substrate, SPT can also metabolize other acyl-CoAs, thereby forming a variety of LCBs, which differ in structures and functions. The mammalian SPT enzyme is composed of three core subunits: SPTLC1, SPTLC2, and SPTLC3. Whereas SPTLC1 and SPTLC2 are ubiquitously expressed, SPTLC3 expression is restricted to a few specific tissues. The SPTLC1 subunit is essential and can associate with either SPTLC2 or SPTLC3 to form an active enzyme. Depending on the stoichiometry of the SPTLC2 and SPTLC3 subunits, the spectrum of SPT products varies. While SPTLC1 and SPTLC2 primarily form C18 and C20 LCBs, the combination of SPTLC1 and SPTLC3 produces a broader spectrum of LCBs. Genetic and population based studies have shown that SPTLC3 expression and function are associated with an altered plasma SL profile and an increased risk for cardio-metabolic diseases. Animal and in vitro studies showed that SPTLC3 might be involved in hepatic and cardiac pathology and could be a therapeutic target for these conditions.Here we present an overview of the current data on the role of SPTLC3 in normal and pathological conditions.
Assuntos
Doenças Metabólicas , Serina C-Palmitoiltransferase , Animais , Coenzima A , Humanos , Mamíferos/metabolismo , Doenças Metabólicas/genética , Serina , Serina C-Palmitoiltransferase/química , Serina C-Palmitoiltransferase/genética , Serina C-Palmitoiltransferase/metabolismo , Esfingolipídeos/metabolismoRESUMO
Animal models of neurodegenerative diseases such as inherited peripheral neuropathies sometimes accurately recreate the pathophysiology of the human disease, and sometimes accurately recreate the genetic perturbations found in patients. Ideally, models achieve both, but this is not always possible; nonetheless, such models are informative. Here we describe two animal models of inherited peripheral neuropathy: mice with a mutation in tyrosyl tRNA-synthetase, YarsE196K , modeling dominant intermediate Charcot-Marie-Tooth disease type C (diCMTC), and mice with a mutation in serine palmitoyltransferase long chain 1, Sptlc1C133W , modeling hereditary sensory and autonomic neuropathy type 1 (HSAN1). YarsE196K mice develop disease-relevant phenotypes including reduced motor performance and reduced nerve conduction velocities by 4 months of age. Peripheral motor axons are reduced in size, but there is no reduction in axon number and plasma neurofilament light chain levels are not increased. Unlike the dominant human mutations, the YarsE196K mice only show these phenotypes as homozygotes, or as compound heterozygotes with a null allele, and no phenotype is observed in E196K or null heterozygotes. The Sptlc1C133W mice carry a knockin allele and show the anticipated increase in 1-deoxysphingolipids in circulation and in a variety of tissues. They also have mild behavioral defects consistent with HSAN1, but do not show neurophysiological defects or axon loss in peripheral nerves or in the epidermis of the hind paw or tail. Thus, despite the biochemical phenotype, the Sptlc1C133W mice do not show a strong neuropathy phenotype. Surprisingly, these mice were lethal as homozygotes, but the heterozygous genotype studied corresponds to the dominant genetics seen in humans. Thus, YarsE196K homozygous mice have a relevant phenotype, but imprecisely reproduce the human genetics, whereas the Sptlc1C133W mice precisely reproduce the human genetics, but do not recreate the disease phenotype. Despite these shortcomings, both models are informative and will be useful for future research.
Assuntos
Doença de Charcot-Marie-Tooth , Neuropatias Hereditárias Sensoriais e Autônomas , Animais , Doença de Charcot-Marie-Tooth/genética , Modelos Animais de Doenças , Neuropatias Hereditárias Sensoriais e Autônomas/genética , Humanos , Ligases/genética , Camundongos , Mutação , Doenças do Sistema Nervoso Periférico , RNA de Transferência , Serina C-Palmitoiltransferase/genéticaRESUMO
Hereditary sensory neuropathy type 1 (HSAN1) is a rare axonopathy, characterized by a progressive loss of sensation (pain, temperature, and vibration), neuropathic pain, and wound healing defects. HSAN1 is caused by several missense mutations in the serine palmitoyltransferase long-chain base subunit 1 and serine palmitoyltransferase long-chain base subunit 2 of the enzyme serine palmitoyltransferase-the key enzyme for the synthesis of sphingolipids. The mutations change the substrate specificity of serine palmitoyltransferase, which then forms an atypical class of 1-deoxy-sphinglipids (1-deoxySLs). Similarly, patients with type 2 diabetes mellitus also present with elevated 1-deoxySLs and a comparable clinical phenotype. The effect of 1-deoxySLs on neuronal cells was investigated in detail, but their impact on other cell types remains elusive. Here, we investigated the consequences of externally added 1-deoxySLs on the migration of fibroblasts in a scratch assay as a simplified cellular wound-healing model. We showed that 1-deoxy-sphinganine (1-deoxySA) inhibits the migration of NIH-3T3 fibroblasts in a dose- and time-dependent manner. This was not seen for a non-native, L-threo stereoisomer. Supplemented 1-deoxySA was metabolized to 1-deoxy-(dihydro)ceramide and downstream to 1-deoxy-sphingosine. Inhibiting downstream metabolism by blocking N-acylation rescued the migration phenotype. In contrast, adding 1-deoxy-sphingosine had a lesser effect on cell migration but caused the massive formation of intracellular vacuoles. Further experiments showed that the effect on cell migration was primarily mediated by 1-deoxy-dihydroceramides rather than by the free base or 1-deoxyceramides. Based on these findings, we suggest that limiting the N-acylation of 1-deoxySA could be a therapeutic approach to improve cell migration and wound healing in patients with HSAN1 and type 2 diabetes mellitus.
Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Fibroblastos/efeitos dos fármacos , Neuropatias Hereditárias Sensoriais e Autônomas/metabolismo , Esfingolipídeos/farmacologia , Animais , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Fibroblastos/metabolismo , Camundongos , Células NIH 3T3RESUMO
Hereditary sensory neuropathy type 1 (HSN1) is caused by mutations in the SPTLC1 or SPTLC2 sub-units of the enzyme serine palmitoyltransferase, resulting in the production of toxic 1-deoxysphingolipid bases (DSBs). We used induced pluripotent stem cells (iPSCs) from patients with HSN1 to determine whether endogenous DSBs are neurotoxic, patho-mechanisms of toxicity and response to therapy. HSN1 iPSC-derived sensory neurons (iPSCdSNs) endogenously produce neurotoxic DSBs. Complex gangliosides, which are essential for membrane micro-domains and signaling, are reduced, and neurotrophin signaling is impaired, resulting in reduced neurite outgrowth. In HSN1 myelinating cocultures, we find a major disruption of nodal complex proteins after 8 weeks, which leads to complete myelin breakdown after 6 months. HSN1 iPSC models have, therefore, revealed that SPTLC1 mutation alters lipid metabolism, impairs the formation of complex gangliosides, and reduces axon and myelin stability. Many of these changes are prevented by l-serine supplementation, supporting its use as a rational therapy.
Assuntos
Axônios/metabolismo , Gangliosídeos/metabolismo , Neuropatias Hereditárias Sensoriais e Autônomas/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Modelos Biológicos , Neuroglia/metabolismo , Serina/farmacologia , Envelhecimento/patologia , Axônios/efeitos dos fármacos , Axônios/ultraestrutura , Sequência de Bases , Caspase 3/metabolismo , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Neuropatias Hereditárias Sensoriais e Autônomas/genética , Humanos , Células-Tronco Pluripotentes Induzidas/ultraestrutura , Microdomínios da Membrana/efeitos dos fármacos , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/ultraestrutura , Bainha de Mielina/metabolismo , Fatores de Crescimento Neural/metabolismo , Neuroglia/efeitos dos fármacos , Crescimento Neuronal/efeitos dos fármacos , Proteína Nodal/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/patologia , Células Receptoras Sensoriais/ultraestrutura , Transdução de Sinais/efeitos dos fármacos , Esfingolipídeos/metabolismo , Transcriptoma/genéticaRESUMO
Amyotrophic lateral sclerosis (ALS) is a progressive, neurodegenerative disease of the lower and upper motor neurons with sporadic or hereditary occurrence. Age of onset, pattern of motor neuron degeneration and disease progression vary widely among individuals with ALS. Various cellular processes may drive ALS pathomechanisms, but a monogenic direct metabolic disturbance has not been causally linked to ALS. Here we show SPTLC1 variants that result in unrestrained sphingoid base synthesis cause a monogenic form of ALS. We identified four specific, dominantly acting SPTLC1 variants in seven families manifesting as childhood-onset ALS. These variants disrupt the normal homeostatic regulation of serine palmitoyltransferase (SPT) by ORMDL proteins, resulting in unregulated SPT activity and elevated levels of canonical SPT products. Notably, this is in contrast with SPTLC1 variants that shift SPT amino acid usage from serine to alanine, result in elevated levels of deoxysphingolipids and manifest with the alternate phenotype of hereditary sensory and autonomic neuropathy. We custom designed small interfering RNAs that selectively target the SPTLC1 ALS allele for degradation, leave the normal allele intact and normalize sphingolipid levels in vitro. The role of primary metabolic disturbances in ALS has been elusive; this study defines excess sphingolipid biosynthesis as a fundamental metabolic mechanism for motor neuron disease.
Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Esfingolipídeos/biossíntese , Adolescente , Adulto , Alelos , Sequência de Aminoácidos , Esclerose Lateral Amiotrófica/enzimologia , Esclerose Lateral Amiotrófica/genética , Sistemas CRISPR-Cas , Criança , Feminino , Genes Dominantes , Células HEK293 , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Serina C-Palmitoiltransferase/genética , Serina C-Palmitoiltransferase/metabolismo , Adulto JovemRESUMO
Sphingolipids (SLs) are chemically diverse lipids that have important structural and signaling functions within mammalian cells. SLs are commonly defined by the presence of a long-chain base (LCB) that is normally formed by the conjugation of l-serine and palmitoyl-CoA. This pyridoxal 5-phosphate (PLP)-dependent reaction is mediated by the enzyme serine-palmitoyltransferase (SPT). However, SPT can also metabolize other acyl-CoAs, in the range of C14 to C18, forming a variety of LCBs that differ by structure and function. Mammalian SPT consists of three core subunits: SPTLC1, SPTLC2, and SPTLC3. Whereas SPTLC1 and SPTLC2 are ubiquitously expressed, SPTLC3 expression is restricted to certain tissues only. The influence of the individual subunits on enzyme activity is not clear. Using cell models deficient in SPTLC1, SPTLC2, and SPTLC3, we investigated the role of each subunit on enzyme activity and the LCB product spectrum. We showed that SPTLC1 is essential for activity, whereas SPTLC2 and SPTLC3 are partly redundant but differ in their enzymatic properties. SPTLC1 in combination with SPTLC2 specifically formed C18, C19, and C20 LCBs while the combination of SPTLC1 and SPTLC3 yielded a broader product spectrum. We identified anteiso-branched-C18 SO (meC18SO) as the primary product of the SPTLC3 reaction. The meC18SO was synthesized from anteiso-methyl-palmitate, in turn synthesized from a precursor metabolite generated in the isoleucine catabolic pathway. The meC18SO is metabolized to ceramides and complex SLs and is a constituent of human low- and high-density lipoproteins.
Assuntos
Serina C-Palmitoiltransferase/metabolismo , Esfingolipídeos/metabolismo , Esfingosina/metabolismo , Animais , Linhagem Celular , Técnicas de Inativação de Genes , Humanos , Camundongos , Serina C-Palmitoiltransferase/genética , Especificidade por SubstratoRESUMO
In the nematode C. elegans, insulin signaling regulates development and aging in response to the secretion of numerous insulin peptides. Here, we describe a novel, non-signaling isoform of the nematode insulin receptor (IR), DAF-2B, that modulates insulin signaling by sequestration of insulin peptides. DAF-2B arises via alternative splicing and retains the extracellular ligand binding domain but lacks the intracellular signaling domain. A daf-2b splicing reporter revealed active regulation of this transcript through development, particularly in the dauer larva, a diapause stage associated with longevity. CRISPR knock-in of mScarlet into the daf-2b genomic locus confirmed that DAF-2B is expressed in vivo and is likely secreted. Genetic studies indicate that DAF-2B influences dauer entry, dauer recovery and adult lifespan by altering insulin sensitivity according to the prevailing insulin milieu. Thus, in C. elegans alternative splicing at the daf-2 locus generates a truncated IR that fine-tunes insulin signaling in response to the environment.
Assuntos
Processamento Alternativo , Caenorhabditis elegans/metabolismo , Insulina/metabolismo , Receptor de Insulina/genética , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Genes de Helmintos , Insulina/química , Mutação , Transdução de SinaisRESUMO
BACKGROUND & AIMS: Patients with non-alcoholic fatty liver disease (NAFLD) exhibit higher levels of plasma 1-deoxysphingolipids than healthy individuals. The aim of this study was to investigate the role of farnesoid X receptor (FXR) in 1-deoxysphingolipid de novo synthesis and degradation. METHODS: Mice were fed with a high-fat diet (HFD) to induce obesity and NAFLD, and then treated with the FXR ligand obeticholic acid (OCA). Histology and gene expression analysis were performed on liver tissue. Sphingolipid patterns from NAFLD patients and mouse models were assessed by liquid chromatography-mass spectrometry. The molecular mechanism underlying the effect of FXR activation on sphingolipid metabolism was studied in Huh7 cells and primary cultured hepatocytes, as well as in a 1-deoxysphinganine-treated mouse model. RESULTS: 1-deoxysphingolipids were increased in both NAFLD patients and mouse models. FXR activation by OCA protected the liver against oxidative stress, apoptosis, and reduced 1-deoxysphingolipid levels, both in a HFD-induced mouse model of obesity and in 1-deoxysphinganine-treated mice. In vitro, FXR activation lowered intracellular 1-deoxysphingolipid levels by inducing Cyp4f-mediated degradation, but not by inhibiting de novo synthesis, thereby protecting hepatocytes against doxSA-induced cytotoxicity, mitochondrial damage, and apoptosis. Overexpression of Cyp4f13 in cells was sufficient to ameliorate doxSA-induced cytotoxicity. Treatment with the Cyp4f pan-inhibitor HET0016 or FXR knock-down fully abolished the protective effect of OCA, indicating that OCA-mediated 1-deoxysphingolipid degradation is FXR and Cyp4f dependent. CONCLUSIONS: Our study identifies FXR-Cyp4f as a novel regulatory pathway for 1-deoxysphingolipid metabolism. FXR activation represents a promising therapeutic strategy for patients with metabolic syndrome and NAFLD.
Assuntos
Hepatopatia Gordurosa não Alcoólica , Amidinas , Animais , Humanos , Fígado , Camundongos , Camundongos Endogâmicos C57BL , Receptores Citoplasmáticos e Nucleares , EsfingolipídeosRESUMO
Hereditary sensory and autonomic neuropathy type 1 (HSAN1) is a rare, autosomal dominantly inherited, slowly progressive and length-dependent axonal peripheral neuropathy. HSAN1 is associated with several mutations in serine-palmitoyltransferase (SPT), the first enzyme in the de novo sphingolipid biosynthetic pathway. HSAN1 mutations alter the substrate specificity of SPT, which leads to the formation of 1-deoxysphingolipids, an atypical and neurotoxic subclass of sphingolipids. This study describes the clinical and neurophysiological phenotype of a German family with a novel SPTCL2 mutation (c.529A > G; N177D) associated with HSAN1 and the biochemical characterization of this mutation.) The mutaion was identified in five family members that segregated with the diesease. Patients were characterized genetically and clinically for neurophysiological function. Their plasma sphingolipid profiles were analyzed by LC-MS. The biochemical properties of the mutation were characterized in a cell-based activity assay. Affected family members showed elevated 1-deoxysphingolipid plasma levels. HEK293 cells expressing the N177D SPTLC2 mutant showed increased de novo 1-deoxysphingolipid formation, but also displayed elevated canonical SPT activity and increased C20 sphingoid base production. This study identifies the SPTLC2 N177D variant as a novel disease-causing mutation with increased 1-deoxySL formation and its association with a typical HSAN1 phenotype.
Assuntos
Neuropatias Hereditárias Sensoriais e Autônomas/genética , Mutação de Sentido Incorreto , Mutação Puntual , Serina C-Palmitoiltransferase/genética , Alanina/metabolismo , Sequência de Aminoácidos , Sequência Consenso , Feminino , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Modelos Moleculares , Linhagem , Conformação Proteica , Estudos Retrospectivos , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Serina C-Palmitoiltransferase/deficiência , Serina C-Palmitoiltransferase/fisiologia , Esfingolipídeos/biossíntese , Esfingolipídeos/sangueRESUMO
Hereditary sensory neuropathy type 1 (HSAN1) may be the first genetic neuropathy amenable to a specific mechanism-based treatment, as L-serine supplementation can be used to lower the neurotoxic levels of 1-deoxysphingolipids (1-deoxySL) that cause the neurodegeneration. The treatment is so far untested in HSAN1C caused by variants in the serine palmitoyl transferase subunit 2 (SPTLC2) gene. The aim of this study was to establish whether oral L-serine lowers 1-deoxySL in a patient with HSAN1C, to perform a dose escalation to find the minimal effective dose, and to assess the safety profile and global metabolic effects of the treatment. Our patient underwent a 52-wk treatment in which the L-serine dose was titrated up to 400 mg/kg/day. She was followed up by repeated clinical examination, nerve conduction testing, and skin biopsies to document effects on small nerve fibers. Serum was assayed for 1-deoxySL and metabolomics analysis of 111 metabolites. We found a robust lowering of 1-deoxySL, which correlated in a near-linear fashion with increased serum L-serine levels. Metabolomics analysis showed a modest elevation in glycine and a marked reduction in the level of cytosine, whereas most of the other assayed metabolites did not change. There were no direct side effects from the treatment, but the patient developed a transitory toe ulceration during the course of the study. The Charcot-Marie-Tooth neuropathy score increased by 1 point. We conclude that oral supplementation of L-serine decreases 1-deoxySL in HSAN1C without major global effects on metabolism. L-serine is therefore a potential treatment for HSAN1C.
Assuntos
Neuropatias Hereditárias Sensoriais e Autônomas/dietoterapia , Serina C-Palmitoiltransferase/genética , Serina/uso terapêutico , Adulto , Suplementos Nutricionais , Feminino , Neuropatias Hereditárias Sensoriais e Autônomas/genética , Neuropatias Hereditárias Sensoriais e Autônomas/metabolismo , Humanos , Mutação , Serina/metabolismo , Serina C-Palmitoiltransferase/sangue , Serina C-Palmitoiltransferase/metabolismo , Esfingolipídeos/sangueRESUMO
Long-chain bases (LCBs) are the precursors to ceramide and sphingolipids in eukaryotic cells. They are formed by the action of serine palmitoyl-CoA transferase (SPT), a complex of integral membrane proteins located in the endoplasmic reticulum. SPT activity is negatively regulated by Orm proteins to prevent the toxic overaccumulation of LCBs. Here we show that overaccumulation of LCBs in yeast results in their conversion to a hitherto undescribed LCB derivative, an LCB vinyl ether. The LCB vinyl ether is predominantly formed from phytosphingosine (PHS) as revealed by conversion of odd chain length tracers C17-dihydrosphingosine and C17-PHS into the corresponding LCB vinyl ether derivative. PHS vinyl ether formation depends on ongoing acetyl-CoA synthesis, and its levels are elevated when the LCB degradative pathway is blocked by deletion of the major LCB kinase, LCB4, or the LCB phosphate lyase, DPL1. PHS vinyl ether formation thus appears to constitute a shunt for the LCB phosphate- and lyase-dependent degradation of LCBs. Consistent with a role of PHS vinyl ether formation in LCB detoxification, the lipid is efficiently exported from the cells.
Assuntos
Ceramidas/metabolismo , Serina C-Palmitoiltransferase/metabolismo , Esfingolipídeos/metabolismo , Compostos de Vinila/metabolismo , Acetilcoenzima A/biossíntese , Acetilcoenzima A/química , Ceramidas/química , Retículo Endoplasmático/química , Retículo Endoplasmático/metabolismo , Fosfatos/química , Fosfatos/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Serina C-Palmitoiltransferase/química , Esfingolipídeos/química , Esfingosina/análogos & derivados , Esfingosina/química , Esfingosina/metabolismo , Compostos de Vinila/químicaRESUMO
Increasing incidence of diabetes and shortage of specific beta cells, hormonal switches like that of delta and PP cells of the islets for transplantation, have forced the scientific community to look for alternative sources through xenotransplantation and nanomedicine. The Edmonton protocol of islet transplantation has shown proof of principle of long term survival of islets in type I diabetic patients, leading to insulin prick free life. Copious volume of literature exists on the use of mammalian islets, especially of porcine origin for diabetes reversal in humans with follow-up studies upto 10 yrs. There is an obvious lack of pre-clinical results and data in the pig-to-primate model. The difficulty is in reproducing regularly the successful porcine islet isolation. Although some of the parameters have been taken, making xenotransplantation an attractive and viable alternative therapy. However, scarcity of islets is the main hurdle in the success of islet transplantation programs. Since the islet cell receptor and the insulin molecule have remained conserved throughout the evolution of vertebrates, we reviewed islet studies from other vertebrates especially, jawless fish, cartilaginous as well as bony fishes and chick islets. The similarities of chick B islets with human islets in terms of Streptozotocin insensitivity and retention of glucose responsiveness by new born chick islets tempted us to hypothesize the use of fish and chick islets as alternative sources for transplantation to reverse experimental diabetes. Since ontogeny recapitulates phylogeny, the islets recovered from lower vertebrates are likely to be less immunogenic and may open possibility of using them without immunosuppression. Complementing xenotransplantation, nanotechnology offers an excellent module for addressing the diabetes problem from detection and treatment points of view. This review attempts to throw some light on both these approaches for an effective management and cure of diabetes.