Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Cells ; 13(2)2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38247837

RESUMO

This last decade, chimeric antigen receptor (CAR) T-cell therapy has become a real treatment option for patients with B-cell malignancies, while multiple efforts are being made to extend this therapy to other malignancies and broader patient populations. However, several limitations remain, including those associated with the time-consuming and highly personalized manufacturing of autologous CAR-Ts. Technologies to establish "off-the-shelf" allogeneic CAR-Ts with low alloreactivity are currently being developed, with a strong focus on gene-editing technologies. Although these technologies have many advantages, they have also strong limitations, including double-strand breaks in the DNA with multiple associated safety risks as well as the lack of modulation. As an alternative, non-gene-editing technologies provide an interesting approach to support the development of allogeneic CAR-Ts in the future, with possibilities of fine-tuning gene expression and easy development. Here, we will review the different ways allogeneic CAR-Ts can be manufactured and discuss which technologies are currently used. The biggest hurdles for successful therapy of allogeneic CAR-Ts will be summarized, and finally, an overview of the current clinical evidence for allogeneic CAR-Ts in comparison to its autologous counterpart will be given.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/genética , Edição de Genes , Imunoterapia Adotiva
2.
Mol Ther Nucleic Acids ; 34: 102038, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37799328

RESUMO

Genome engineering technologies are powerful tools in cell-based immunotherapy to optimize or fine-tune cell functionalities. However, their use for multiple gene edits poses relevant biological and technical challenges. Short hairpin RNA (shRNA)-based cell engineering bypasses these criticalities and represents a valid alternative to CRISPR-based gene editing. Here, we describe a microRNA (miRNA)-based multiplex shRNA platform obtained by combining highly efficient miRNA scaffolds into a chimeric cluster, to deliver up to four shRNA-like sequences. Thanks to its limited size, our cassette could be deployed in a one-step process along with all the CAR components, streamlining the generation of engineered CAR T cells. The plug-and-play design of the shRNA platform allowed us to swap each shRNA-derived guide sequence without affecting the system performance. Appropriately choosing the target sequences, we were able to either achieve a functional KO, or fine-tune the expression levels of the target genes, all without the need for gene editing. Through our strategy we achieved easy, safe, efficient, and tunable modulation of multiple target genes simultaneously. This approach allows for the effective introduction of multiple functionally relevant tweaks in the transcriptome of the engineered cells, which may lead to increased performance in challenging environments, e.g., solid tumors.

3.
Lancet Haematol ; 10(3): e191-e202, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36764323

RESUMO

BACKGROUND: CYAD-01 is an autologous chimeric antigen receptor (CAR) T-cell product based on the natural killer (NK) group 2D (NKG2D) receptor, which binds eight ligands that are overexpressed in a wide range of haematological malignancies but are largely absent on non-neoplastic cells. Initial clinical evaluation of a single infusion of CYAD-01 at a low dose in patients with relapsed or refractory acute myeloid leukaemia, myelodysplastic syndromes, and multiple myeloma supported the feasibility of the approach and prompted further evaluation of CYAD-01. The aim of the present study was to determine the safety and recommended phase 2 dosing of CYAD-01 administered without preconditioning or bridging chemotherapy. METHODS: The multicentre THINK study was an open-label, dose-escalation, phase 1 study for patients with relapsed or refractory acute myeloid leukaemia, myelodysplastic syndromes, or multiple myeloma, after at least one previous line of therapy. Patients were recruited from five hospitals in the USA and Belgium. The dose-escalation segment evaluated three dose levels: 3 × 108 (dose level one), 1 × 109 (dose level two), and 3 × 109 (dose level three) cells per infusion with a 3 + 3 Fibonacci study design using a schedule of three infusions at 2-week intervals followed by potential consolidation treatment consisting of three additional infusions. The occurrence of dose-limiting toxicities post-CYAD-01 infusion was assessed as the primary endpoint in the total treated patient population. The trial was registered with ClinicalTrials.gov, NCT03018405, and EudraCT, 2016-003312-12, and has been completed. FINDINGS: Between Feb 6, 2017, and Oct 9, 2018, 25 patients were registered in the haematological dose-escalation segment. Seven patients had manufacturing failure for insufficient yield and two had screening failure. 16 patients were treated with CYAD-01 (three with multiple myeloma and three with acute myeloid leukaemia at dose level one; three with acute myeloid leukaemia at dose level two; and six with acute myeloid leukaemia and one with myelodysplastic syndromes at dose level three). Median follow-up was 118 days (IQR 46-180). Seven patients (44%) had grade 3 or 4 treatment-related adverse events. In total, five patients (31%) had grade 3 or 4 cytokine release syndrome across all dose levels. One dose-limiting toxicity of cytokine release syndrome was reported at dose level three. No treatment-related deaths occurred, and the maximum tolerated dose was not reached. Three (25%) of 12 evaluable patients with relapsed or refractory acute myeloid leukaemia or myelodysplastic syndromes had an objective response. Among responders, two patients with acute myeloid leukaemia proceeded to allogeneic haematopoietic stem-cell transplantation (HSCT) after CYAD-01 treatment, with durable ongoing remissions (5 and 61 months). INTERPRETATION: Treatment with a multiple CYAD-01 infusion schedule without preconditioning is well tolerated and shows anti-leukaemic activity, although without durability outside of patients bridged to allogeneic HSCT. These phase 1 data support the proof-of-concept of targeting NKG2D ligands by CAR T-cell therapy. Further clinical studies with NKG2D-based CAR T-cells are warranted, potentially via combinatorial antigen targeted approaches, to improve anti-tumour activity. FUNDING: Celyad Oncology.


Assuntos
Leucemia Mieloide Aguda , Mieloma Múltiplo , Síndromes Mielodisplásicas , Humanos , Subfamília K de Receptores Semelhantes a Lectina de Células NK/uso terapêutico , Imunoterapia Adotiva , Síndrome da Liberação de Citocina , Leucemia Mieloide Aguda/tratamento farmacológico , Síndromes Mielodisplásicas/tratamento farmacológico
4.
BioDrugs ; 33(5): 515-537, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31363930

RESUMO

Chimeric antigen receptor-T cells (CAR-Ts) are an exciting new cancer treatment modality exemplified by the recent regulatory approval of two CD19-targeted CAR-T therapies for certain B cell malignancies. However, this success in the hematological setting has yet to translate to a significant level of objective clinical responses in the solid tumor setting. The reason for this lack of translation undoubtedly lies in the substantial challenges raised by solid tumors to all therapies, including CAR-T, that differ from B cell malignancies. For instance, intravenously infused CAR-Ts are likely to make rapid contact with cancerous B cells since both tend to reside in the same vascular compartments within the body. By contrast, solid cancers tend to form discrete tumor masses with an immune-suppressive tumor microenvironment composed of tumor cells and non-tumor stromal cells served by abnormal vasculature that restricts lymphocyte infiltration and suppresses immune function, expansion, and persistence. Moreover, the paucity of uniquely and homogeneously expressed tumor antigens and inherent plasticity of cancer cells provide major challenges to the specificity, potency, and overall effectiveness of CAR-T therapies. This review focuses on the major preclinical and clinical strategies currently being pursued to tackle these challenges in order to drive the success of CAR-T therapy against solid tumors.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Neoplasias/terapia , Receptores de Antígenos Quiméricos/uso terapêutico , Microambiente Tumoral/imunologia , Animais , Terapia Baseada em Transplante de Células e Tecidos/efeitos adversos , Ensaios Clínicos como Assunto , Humanos , Neoplasias/imunologia , Linfócitos T/imunologia , Linfócitos T/transplante
6.
Cell Mol Life Sci ; 76(18): 3667-3678, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31062071

RESUMO

Cardiolipins (CLs) are tetra-acylated diphosphatidylglycerols found in bacteria, yeast, plants, and animals. In healthy mammals, CLs are unsaturated, whereas saturated CLs are found in blood cells from Barth syndrome patients and in some Gram-positive bacteria. Here, we show that unsaturated but not saturated CLs block LPS-induced NF-κB activation, TNF-α and IP-10 secretion in human and murine macrophages, as well as LPS-induced TNF-α and IL-1ß release in human blood mononuclear cells. Using HEK293 cells transfected with Toll-like receptor 4 (TLR4) and its co-receptor Myeloid Differentiation 2 (MD2), we demonstrate that unsaturated CLs compete with LPS for binding TLR4/MD2 preventing its activation, whereas saturated CLs are TLR4/MD2 agonists. As a consequence, saturated CLs induce a pro-inflammatory response in macrophages characterized by TNF-α and IP-10 secretion, and activate the alternative NLRP3 inflammasome pathway in human blood-derived monocytes. Thus, we identify that double bonds discriminate between anti- and pro-inflammatory properties of tetra-acylated molecules, providing a rationale for the development of TLR4 activators and inhibitors for use as vaccine adjuvants or in the treatment of TLR4-related diseases.


Assuntos
Cardiolipinas/farmacologia , Macrófagos/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Animais , Anti-Infecciosos/química , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Ligação Competitiva , Cardiolipinas/química , Cardiolipinas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Quimiocina CXCL10/metabolismo , Células HEK293 , Humanos , Receptores de Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Antígeno 96 de Linfócito/genética , Antígeno 96 de Linfócito/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Monócitos/citologia , Monócitos/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ligação Proteica , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/agonistas , Receptor 4 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/genética , Fator de Necrose Tumoral alfa/metabolismo
7.
Planta ; 249(2): 469-480, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30255355

RESUMO

MAIN CONCLUSION: DOTAP triggers Arabidopsis thaliana immunity and by priming the defense response is able to reduce bacterial pathogen attack. DOTAP is a cationic lipid widely used as a liposomal transfection reagent and it has recently been identified as a strong activator of the innate immune system in animal cells. Plants are sessile organisms and unlike mammals, that have innate and acquired immunity, plants possess only innate immunity. A key feature of plant immunity is the ability to sense potentially dangerous signals, as it is the case for microbe-associated, pathogen-associated or damage-associated molecular patterns and by doing so, trigger an active defense response to cope with the perturbing stimulus. Here, we evaluated the effect of DOTAP in plant basal innate immunity. An initial plant defense response was induced by the cationic lipid DOTAP in the model plant Arabidopsis thaliana, assessed by callose deposition, reactive oxygen species production, and plant cell death. In addition, a proteomic analysis revealed that these responses are mirrored by changes in the plant proteome, such as up-regulation of proteins related to defense responses, including proteins involved in photorespiration, cysteine and oxylipin synthesis, and oxidative stress response; and down-regulation of enzymes related to photosynthesis. Furthermore, DOTAP was able to prime the defense response for later pathogenic challenges as in the case of the virulent bacterial pathogen Pseudomonas syringae pv. tomato. Disease outcome was diminished in DOTAP-pre-treated leaves and bacterial growth was reduced 100 times compared to mock leaves. Therefore, DOTAP may be considered a good candidate as an elicitor for the study of plant immunity.


Assuntos
Arabidopsis/imunologia , Ácidos Graxos Monoinsaturados/metabolismo , Imunidade Vegetal , Compostos de Amônio Quaternário/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Glucanos/metabolismo , Lipossomos/metabolismo , Fotossíntese , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Folhas de Planta/metabolismo , Proteômica , Espécies Reativas de Oxigênio/metabolismo
8.
J Control Release ; 287: 67-77, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30110615

RESUMO

Effective vaccine formulations consist of several components: an antigen carrier, the antigen, a stimulator of cellular immunity such as a Toll-like Receptors (TLRs) ligand, and a stimulator of humoral response such as an inflammasome activator. Here, we investigated the immunostimulatory and adjuvant properties of lipopolyamines, cationic lipids used as gene carriers. We identified new lipopolyamines able to activate both TLR2 and TLR4 and showed that lipopolyamines interact with TLRs via a mechanism different from the one used by bacterial ligands, activating a strong type-I IFN response, pro-inflammatory cytokines and IL-1ß secretion. The TLR and inflammasome stimulations, together with the antigen carrier properties of lipopolyamines, resulted in both humoral and cellular immunity in mice vaccinated against OVA and make lipopolyamines promising one-component vaccine adjuvants.


Assuntos
Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/farmacologia , Lipídeos/química , Lipídeos/farmacologia , Poliaminas/química , Poliaminas/farmacologia , Compostos de Alúmen/farmacologia , Animais , Cátions/administração & dosagem , Cátions/química , Cátions/farmacologia , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Feminino , Células HEK293 , Humanos , Interleucina-1beta/imunologia , Lipídeos/administração & dosagem , Camundongos , Poliaminas/administração & dosagem , Células RAW 264.7 , Receptor 2 Toll-Like/imunologia , Receptor 4 Toll-Like/imunologia , Vacinação , Vacinas/administração & dosagem , Vacinas/química , Vacinas/farmacologia
9.
Nanomedicine ; 14(4): 1417-1427, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29689371

RESUMO

Gliadin, an immunogenic protein present in wheat, is not fully degraded by humans and after the normal gastric and pancreatic digestion, the immunodominant 33-mer gliadin peptide remains unprocessed. The 33-mer gliadin peptide is found in human faeces and urine, proving not only its proteolytic resistance in vivo but more importantly its transport through the entire human body. Here, we demonstrate that 33-mer supramolecular structures larger than 220 nm induce the overexpression of nuclear factor kappa B (NF-κB) via a specific Toll-like Receptor (TLR) 2 and (TLR) 4 dependent pathway and the secretion of pro-inflammatory cytokines such as IP-10/CXCL10 and TNF-α. Using helium ion microscopy, we elucidated the initial stages of oligomerisation of 33-mer gliadin peptide, showing that rod-like oligomers are nucleation sites for protofilament formation. The relevance of the 33-mer supramolecular structures in the early stages of the disease is paving new perspectives in the understanding of gluten-related disorders.


Assuntos
Gliadina/metabolismo , Macrófagos/metabolismo , Receptores Toll-Like/metabolismo , Humanos , Imunidade Inata/fisiologia , NF-kappa B/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
12.
BMJ Open ; 7(11): e017075, 2017 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-29133316

RESUMO

INTRODUCTION: NKR-2 are autologous T cells genetically modified to express a chimeric antigen receptor (CAR) comprising a fusion of the natural killer group 2D (NKG2D) receptor with the CD3ζ signalling domain, which associates with the adaptor molecule DNAX-activating protein of 10 kDa (DAP10) to provide co-stimulatory signal upon ligand binding. NKG2D binds eight different ligands expressed on the cell surface of many tumour cells and which are normally absent on non-neoplastic cells. In preclinical studies, NKR-2 demonstrated long-term antitumour activity towards a breadth of tumour indications, with maximum efficacy observed after multiple NKR-2 administrations. Importantly, NKR-2 targeted tumour cells and tumour neovasculature and the local tumour immunosuppressive microenvironment and this mechanism of action of NKR-2 was established in the absence of preconditioning. METHODS AND ANALYSIS: This open-label phase I study will assess the safety and clinical activity of NKR-2 treatment administered three times, with a 2-week interval between each administration in different tumour types. The study will contain two consecutive segments: a dose escalation phase followed by an expansion phase. The dose escalation study involves two arms, one in solid tumours (five specific indications) and one in haematological tumours (two specific indications) and will include three dose levels in each arm: 3×108, 1×109 and 3×109 NKR-2 per injection. On the identification of the recommended dose in the first segment, based on dose-limiting toxicity occurrences, the study will expand to seven different cohorts examining the seven different tumour types separately. Clinical responses will be determined according to standard Response Evaluation Criteria In Solid Tumors (RECIST) criteria for solid tumours or international working group response criteria in haematological tumours. ETHICS APPROVAL AND DISSEMINATION: Ethical approval has been obtained at all sites. Written informed consent will be taken from all participants. The results of this study will be disseminated through presentation at international scientific conferences and reported in peer-reviewed scientific journals. TRIAL REGISTRATION NUMBER: NCT03018405, EudraCT 2016-003312-12; Pre-result.


Assuntos
Subfamília K de Receptores Semelhantes a Lectina de Células NK/administração & dosagem , Metástase Neoplásica/terapia , Neoplasias/terapia , Projetos de Pesquisa , Bélgica , Feminino , Humanos , Imunoterapia/efeitos adversos , Masculino , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Neoplasias/classificação , Estados Unidos
13.
Future Oncol ; 13(18): 1593-1605, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28613086

RESUMO

Chimeric antigen receptors (CARs) are genetically engineered proteins that combine an extracellular antigen-specific recognition domain with one or several intracellular T-cell signaling domains. When expressed in T cells, these CARs specifically trigger T-cell activation upon antigen recognition. While the clinical proof of principle of CAR T-cell therapy has been established in hematological cancers, CAR T cells are only at the early stages of being explored to tackle solid cancers. This special report discusses the concept of exploiting natural killer cell receptors as an approach that could broaden the specificity of CAR T cells and potentially enhance the efficacy of this therapy against solid tumors. New data demonstrating feasibility of this approach in humans and supporting the ongoing clinical trial are also presented.


Assuntos
Antígenos de Neoplasias/imunologia , Imunoterapia Adotiva , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Neoplasias/imunologia , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Antígenos de Neoplasias/metabolismo , Ensaios Clínicos como Assunto , Citotoxicidade Imunológica , Avaliação Pré-Clínica de Medicamentos , Humanos , Imunoterapia Adotiva/métodos , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Neoplasias/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Resultado do Tratamento
14.
J Control Release ; 247: 182-193, 2017 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-28040465

RESUMO

Lipopolyamines (LPAs) are cationic lipids; they interact spontaneously with nucleic acids to form lipoplexes used for gene delivery. The main hurdle to using lipoplexes in gene therapy lies in their immunostimulatory properties, so far attributed to the nucleic acid cargo, while cationic lipids were considered as inert to the immune system. Here we demonstrate for the first time that di-C18 LPAs trigger pro-inflammatory responses through Toll-like receptor 2 (TLR2) activation, and this whether they are bound to nucleic acids or not. Molecular docking experiments suggest potential TLR2 binding modes reminiscent of bacterial lipopeptide sensing. The di-C18 LPAs share the ability of burying their lipid chains in the hydrophobic cavity of TLR2 and, in some cases, TLR1, at the vicinity of the dimerization interface; the cationic headgroups form multiple hydrogen bonds, thus crosslinking TLRs into functional complexes. Unravelling the molecular basis of TLR1 and TLR6-driven heterodimerization upon LPA binding underlines the highly collaborative and promiscuous ligand binding mechanism. The prevalence of non-specific main chain-mediated interactions demonstrates that potentially any saturated LPA currently used or proposed as transfection agent is likely to activate TLR2 during transfection. Hence our study emphasizes the urgent need to test the inflammatory properties of transfection agents and proposes the use of docking analysis as a preliminary screening tool for the synthesis of new non-immunostimulatory nanocarriers.


Assuntos
Inflamação/induzido quimicamente , Lipídeos/imunologia , Poliaminas/imunologia , Receptor 2 Toll-Like/imunologia , Linhagem Celular , Células HEK293 , Humanos , Inflamação/imunologia , Lipídeos/efeitos adversos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Simulação de Acoplamento Molecular , Ácidos Nucleicos/administração & dosagem , Ácidos Nucleicos/genética , Poliaminas/efeitos adversos , Transfecção , Fator de Necrose Tumoral alfa/imunologia
15.
Cell Mol Life Sci ; 72(20): 3971-82, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25956320

RESUMO

DiC14-amidine is a cationic lipid that was originally designed as a lipid nanocarrier for nucleic acid transport, and turned out to be a Toll-like receptor 4 (TLR4) agonist as well. We found that while E. coli lipopolysaccharide (LPS) is a TLR4 agonist in all species, diC14-amidine nanoliposomes are full agonists for human, mouse and cat receptors but weak horse agonists. Taking advantage of this unusual species specificity, we used chimeric constructs based on the human and horse sequences and identified two regions in the human TLR4 that modulate the agonist activity of diC14-amidine. Interestingly, these regions lie outside the known LPS-binding domain. Competition experiments also support our hypothesis that diC14-amidine interacts primarily with TLR4 hydrophobic crevices located at the edges of the TLR4/TLR4* dimerization interface. We have characterized potential binding modes using molecular docking analysis and suggest that diC14-amidine nanoliposomes activate TLR4 by facilitating its dimerization in a process that is myeloid differentiation 2 (MD-2)-dependent and cluster of differentiation 14 (CD14)-independent. Our data suggest that TLR4 may be activated through binding at different anchoring points, expanding the repertoire of TLR4 ligands to non-MD-2-binding lipids.


Assuntos
Lipopolissacarídeos/química , Receptor 4 Toll-Like/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Células HEK293 , Cavalos , Humanos , Metabolismo dos Lipídeos , Receptores de Lipopolissacarídeos/fisiologia , Lipopolissacarídeos/metabolismo , Antígeno 96 de Linfócito/química , Antígeno 96 de Linfócito/metabolismo , Antígeno 96 de Linfócito/fisiologia , Camundongos , Modelos Moleculares , Simulação de Acoplamento Molecular , Proteínas Recombinantes de Fusão , Transdução de Sinais , Especificidade da Espécie , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/fisiologia
16.
Biochim Biophys Acta ; 1848(9): 1860-7, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25797518

RESUMO

Over the last twenty years, evidence has been provided that the plasma membrane is partitioned with microdomains, laterally mobile in the bilayer, providing the necessary microenvironment to specific membrane proteins for signalling pathways to be initiated. We discuss here the importance of such microdomains for Toll-like receptors (TLR) localization and function. First, lipid microdomains favour recruitment and clustering of the TLR machinery partners, i.e. receptors and co-receptors previously identified to be required for ligand recognition and signal transmission. Further, the presence of the so-called Cholesterol Recognition Amino-Acid Consensus (CRAC) sequences in the intracellular juxtamembrane domain of several Toll-like receptors suggests a direct role of cholesterol in the activation process. This article is part of a Special Issue entitled: Lipid-protein interactions.


Assuntos
Lipídeos de Membrana/metabolismo , Microdomínios da Membrana/metabolismo , Transdução de Sinais , Receptores Toll-Like/metabolismo , Sequência de Aminoácidos , Colesterol/química , Colesterol/metabolismo , Humanos , Lipídeos de Membrana/química , Microdomínios da Membrana/química , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Receptores Toll-Like/química , Receptores Toll-Like/genética
17.
Mol Plant Pathol ; 16(9): 963-72, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25727690

RESUMO

Natural and synthetic elicitors have contributed significantly to the study of plant immunity. Pathogen-derived proteins and carbohydrates that bind to immune receptors, allow the fine dissection of certain defence pathways. Lipids of a different nature that act as defence elicitors, have also been studied, but their specific effects have been less well characterized, and their receptors have not been identified. In animal cells, nanoliposomes of the synthetic cationic lipid 3-tetradecylamino-tert-butyl-N-tetradecylpropionamidine (diC14) activate the TLR4-dependent immune cascade. Here, we have investigated whether this lipid induces Arabidopsis defence responses. At the local level, diC14 activated early and late defence gene markers (FRK1, WRKY29, ICS1 and PR1), acting in a dose-dependent manner. This lipid induced the salicylic acid (SA)-dependent, but not jasmonic acid (JA)-dependent, pathway and protected plants against Pseudomonas syringae pv. tomato (Pst), but not Botrytis cinerea. diC14 was not toxic to plant or pathogen, and potentiated pathogen-induced callose deposition. At the systemic level, diC14 induced PR1 expression and conferred resistance against Pst. diC14-induced defence responses required the signalling protein EDS1, but not NDR1. Curiously, the lipid-induced defence gene expression was lower in the fls2/efr/cerk1 triple mutant, but still unchanged in the single mutants. The amidine headgroup and chain length were important for its activity. Given the robustness of the responses triggered by diC14, its specific action on a defence pathway and the requirement for well-known defence components, this synthetic lipid is emerging as a useful tool to investigate the initial events involved in plant innate immunity.


Assuntos
Amidinas/metabolismo , Arabidopsis/imunologia , Imunidade Vegetal , Arabidopsis/genética , Botrytis/imunologia , Cátions , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Pseudomonas syringae/imunologia
18.
Biochim Biophys Acta ; 1848(1 Pt A): 127-33, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25316415

RESUMO

In this work, the bilayer structure of novel cationic lipid diC16-amidine was compared to the one of zwitterionic dipalmitoyl phosphatidylcholine ( DPPC), which shares the same hydrophobic domain. Differential scanning calorimetry shows that DPPC and diC16-am idine bilayers have similar phase transition temperatures, but diC16-a midine membranes display a less cooperative phase transition and an absence of pretransition. Both bilayers were analyzed from surface to core, using 5-, 7-, 10-, 12-, 14-, and 16-PCSL spin labels. As expected, electron spin resonance (ESR) spectra show that the gel phase of DPPC presents a flexibility gradient toward the core. In contrast, this gradient exists in the gel phase of diC16-amidine bilayers but only down to the 12th lipid tail carbon. The 14th and 16th carbons of the cationic lipid are in a very rigid environment, similar to the one observed at the bilayer surface. These data suggest that diC16-amidine molecules are organized in a partially interdigitated gel phase. ESR spectroscopy also shows that the lamellar fluid phase of diC16-amidine is more rigid than the one of DPPC. Fluorescence resonance energy transfer assays reveal that diC16-amidine displays a more efficient fusogenic activity in the gel phase than in the fluid one, suggesting that the partial interdigitation of the gel phase is important for the fusion process to occur. Since the gel- fl uid transition temperature is 42 ·c. diC16-amid ine is fusogenic at the physiological temperature and is therefore a promising lipid for delivery applications without the need of helper lipids.


Assuntos
Amidinas/química , Cátions/química , Bicamadas Lipídicas/química , Termodinâmica , 1,2-Dipalmitoilfosfatidilcolina/química , Varredura Diferencial de Calorimetria , Espectroscopia de Ressonância de Spin Eletrônica , Transferência Ressonante de Energia de Fluorescência , Interações Hidrofóbicas e Hidrofílicas , Estrutura Molecular , Transição de Fase , Marcadores de Spin , Temperatura de Transição
20.
Nanomedicine ; 10(4): 775-82, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24361386

RESUMO

We provide evidence that cationic lipids, usually considered as a safe alternative to viral vectors as nanocarriers for gene therapy or drug intracellular delivery, do not behave as inert material but do activate cellular signalling pathways implicated in inflammatory reactions. We show here that the cationic lipid RPR206252 induces NF-κB activation, and the production of TNF-α, IL-1ß, IL-6 and IFN-γ by human or mouse macrophage cell lines. Further, we demonstrate that the activation of inflammatory cascades by RPR206252 is dependent on Toll-like receptor 2 (TLR2), the natural sensor of bacterial lipopeptides and NOD-like receptor protein 3 (NLRP3), the major inflammasome component. Our results suggest that cationic lipid nanocarriers because of their ability to stimulate the innate system can be used as a new class of synthetic and safe adjuvant for vaccination. FROM THE CLINICAL EDITOR: Cationic lipid nanocarriers are typically considered neutral tools for gene delivery. However, as demonstrated in this study, they possess a clear ability to stimulate the innate immune system, and actually can be used as a new class of synthetic and safe adjuvant for vaccination.


Assuntos
Proteínas de Transporte/imunologia , Portadores de Fármacos/farmacologia , Lipídeos/farmacologia , Nanopartículas , Receptor 2 Toll-Like/imunologia , Animais , Citocinas/imunologia , Portadores de Fármacos/química , Células HEK293 , Humanos , Imunidade Inata/efeitos dos fármacos , Lipídeos/química , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA