Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
JCI Insight ; 9(13)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38973611

RESUMO

Optimization of protective immune responses against SARS-CoV-2 remains an urgent worldwide priority. In this regard, type III IFN (IFN-λ) restricts SARS-CoV-2 infection in vitro, and treatment with IFN-λ limits infection, inflammation, and pathogenesis in murine models. Furthermore, IFN-λ has been developed for clinical use to limit COVID-19 severity. However, whether endogenous IFN-λ signaling has an effect on SARS-CoV-2 antiviral immunity and long-term immune protection in vivo is unknown. In this study, we identified a requirement for IFN-λ signaling in promoting viral clearance and protective immune programming in SARS-CoV-2 infection of mice. Expression of both IFN and IFN-stimulated gene (ISG) in the lungs were minimally affected by the absence of IFN-λ signaling and correlated with transient increases in viral titers. We found that IFN-λ supported the generation of protective CD8 T cell responses against SARS-CoV-2 by facilitating accumulation of CD103+ DC in lung draining lymph nodes (dLN). IFN-λ signaling specifically in DCs promoted the upregulation of costimulatory molecules and the proliferation of CD8 T cells. Intriguingly, antigen-specific CD8 T cell immunity to SARS-CoV-2 was independent of type I IFN signaling, revealing a nonredundant function of IFN-λ. Overall, these studies demonstrate a critical role for IFN-λ in protective innate and adaptive immunity upon infection with SARS-CoV-2 and suggest that IFN-λ serves as an immune adjuvant to support CD8 T cell immunity.


Assuntos
Linfócitos T CD8-Positivos , COVID-19 , Interferon Tipo I , SARS-CoV-2 , Animais , Linfócitos T CD8-Positivos/imunologia , SARS-CoV-2/imunologia , Camundongos , COVID-19/imunologia , COVID-19/virologia , Interferon Tipo I/imunologia , Interferon Tipo I/metabolismo , Pulmão/imunologia , Pulmão/virologia , Transdução de Sinais/imunologia , Modelos Animais de Doenças , Interferon lambda , Interferons/imunologia , Interferons/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Dendríticas/imunologia , Humanos
2.
Front Cell Infect Microbiol ; 14: 1275940, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38352056

RESUMO

Chronic pulmonary bacterial infections and associated inflammation remain a cause of morbidity and mortality in people with cystic fibrosis (PwCF) despite new modulator therapies. Therapies targeting host factors that dampen detrimental inflammation without suppressing immune responses critical for controlling infections remain limited, while the development of lung infections caused by antimicrobial resistant bacteria is an increasing global problem, and a significant challenge in CF. Pharmacological compounds targeting the mammalian MAPK proteins MEK1 and MEK2, referred to as MEK1/2 inhibitor compounds, have potential combined anti-microbial and anti-inflammatory effects. Here we examined the immunomodulatory properties of MEK1/2 inhibitor compounds PD0325901, trametinib, and CI-1040 on CF innate immune cells. Human CF macrophage and neutrophil phagocytic functions were assessed by quantifying phagocytosis of serum opsonized pHrodo red E. coli, Staphylococcus aureus, and zymosan bioparticles. MEK1/2 inhibitor compounds reduced CF macrophage pro-inflammatory cytokine production without impairing CF macrophage or neutrophil phagocytic abilities. Wild-type C57BL6/J and Cftr tm1kth (F508del homozygous) mice were used to evaluate the in vivo therapeutic potential of PD0325901 compared to vehicle treatment in an intranasal methicillin-resistant Staphylococcus aureus (MRSA) infection with the community-acquired MRSA strain USA300. In both wild-type and CF mice, PD0325901 reduced inflammation associated body mass loss. Wild-type mice treated with PD0325901 had significant reduction in neutrophil-mediated inflammation compared to vehicle treatment groups, with preserved clearance of bacteria in lung, liver, or spleen 1 day after infection in either wild-type or CF mouse models. In summary, this study provides the first data evaluating the therapeutic potential of MEK1/2 inhibitor to modulate CF immune cells and demonstrates that MEK1/2 inhibitors diminish pro-inflammatory responses without impairing host defense mechanisms required for acute pathogen clearance.


Assuntos
Benzamidas , Fibrose Cística , Difenilamina/análogos & derivados , Staphylococcus aureus Resistente à Meticilina , Humanos , Animais , Camundongos , Fibrose Cística/complicações , Fibrose Cística/tratamento farmacológico , Fibrose Cística/microbiologia , Escherichia coli , Macrófagos , Inflamação/complicações , Gravidade do Paciente , Mamíferos
3.
bioRxiv ; 2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36712028

RESUMO

Chronic pulmonary bacterial infections and associated inflammation remain a cause of morbidity and mortality in people with cystic fibrosis (PwCF) despite new modulator therapies. Therapies targeting host factors that dampen detrimental inflammation without suppressing immune responses critical for controlling infections remain limited, while the acquisition of antibiotic resistance bacterial infections is an increasing global problem, and a significant challenge in CF. Pharmacological compounds targeting the mammalian MAPK proteins MEK1 and MEK2, referred to as MEK1/2 inhibitor compounds, have potential combined anti-microbial and anti-inflammatory effects. Here we examined the immunomodulatory properties of MEK1/2 inhibitor compounds PD0325901, trametinib, and CI-1040 on CF innate immune cells. Human CF macrophage and neutrophil phagocytic functions were assessed by quantifying phagocytosis of serum opsonized pHrodo red E. coli , Staphylococcus aureus , and zymosan bioparticles. MEK1/2 inhibitor compounds reduced CF macrophage pro-inflammatory cytokine production without impairing CF macrophage or neutrophil phagocytic abilities. Wild-type C57BL6/J and Cftr tm1kth (F508del homozygous) mice were used to evaluate the in vivo therapeutic potential of PD0325901 compared to vehicle treatment in an intranasal methicillin-resistant Staphylococcus aureus (MRSA) infection with the community-acquired MRSA strain USA300. In both wild-type and CF mice, PD0325901 reduced infection related weight loss compared to vehicle treatment groups but did not impair clearance of bacteria in lung, liver, or spleen 1 day after infection. In summary, this study provides the first data evaluating the therapeutic potential of MEK1/2 inhibitor to modulate CF immune cells, and demonstrates that MEK1/2 inhibitors dampen pro-inflammatory responses without impairing host defense mechanisms mediating pathogen clearance.

4.
Clin Sci (Lond) ; 136(10): 747-769, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35621124

RESUMO

Pneumonia and its sequelae, acute lung injury, present unique challenges for pulmonary and critical care healthcare professionals, and these challenges have recently garnered global attention due to the ongoing Sars-CoV-2 pandemic. One limitation to translational investigation of acute lung injury, including its most severe manifestation (acute respiratory distress syndrome, ARDS) has been heterogeneity resulting from the clinical and physiologic diagnosis that represents a wide variety of etiologies. Recent efforts have improved our understanding and approach to heterogeneity by defining sub-phenotypes of ARDS although significant gaps in knowledge remain. Improving our mechanistic understanding of acute lung injury and its most common cause, infectious pneumonia, can advance our approach to precision targeted clinical interventions. Here, we review the pathogenesis of pneumonia and acute lung injury, including how respiratory infections and lung injury disrupt lung homoeostasis, and provide an overview of respiratory microbial pathogenesis, the lung microbiome, and interventions that have been demonstrated to improve outcomes-or not-in human clinical trials.


Assuntos
Lesão Pulmonar Aguda , COVID-19 , Pneumonia , Síndrome do Desconforto Respiratório , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/patologia , Humanos , Síndrome do Desconforto Respiratório/etiologia , SARS-CoV-2
5.
Am J Respir Cell Mol Biol ; 66(5): 555-563, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35157553

RESUMO

Acute respiratory distress syndrome (ARDS) remains a significant problem in need of new pharmaceutical approaches to improve its resolution. Studies comparing gene expression signatures in rodents and humans with lung injury reveal conserved pathways, including MAPK (mitogen-activated protein kinase)/ERK (extracellular signal-related protein kinase) activation. In preclinical acute lung injury (ALI) models, inhibition of MAP2K1 (MAPK kinase 1)/MAP2K2 (MAPK kinase 2) improves measures of ALI. Myeloid cell deletion of MAP2K1 results in sustained MAP2K2 activation and nonresolving ALI, suggesting that MAP2K2 deactivation may be a key driver of ALI resolution. We used human genomic data from the iSPAAR (Identification of SNPs Predisposing to Altered Acute Lung Injury Risk) Consortium to assess genetic variants in MAP2K1 and MAP2K2 for association with mortality from ARDS. To determine the role of MAP2K2 in ALI recovery, we studied mice deficient in Map2k2 (Mek2-/-) and wild-type control mice in ALI models. We identified a MAP2K2 variant that was associated with death in ARDS and MAP2K2 expression. In Pseudomonas aeruginosa ALI, Mek2-/- mice had similar early alveolar neutrophilic recruitment but faster resolution of alveolar neutrophilia and vascular leak. Gene expression analysis revealed a role for MAP2K2 in promoting and sustaining select proinflammatory pathway activation in ALI. Bone marrow chimera studies indicate that leukocyte MAP2K2 is the key regulator of ALI duration. These studies implicate a role for MAP2K2 in ALI duration via transcriptional regulation of inflammatory programming with potential relevance to ARDS. Targeting leukocyte MAP2K2 may be an effective strategy to promote ALI resolution.


Assuntos
Lesão Pulmonar Aguda , MAP Quinase Quinase 2/metabolismo , Síndrome do Desconforto Respiratório , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/metabolismo , Animais , Modelos Animais de Doenças , Regulação da Expressão Gênica , MAP Quinase Quinase 2/genética , Camundongos , Síndrome do Desconforto Respiratório/genética
6.
Front Immunol ; 12: 735576, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899695

RESUMO

Interferon lambda (IFNλ) signaling is a promising therapeutic target against viral infection in murine models, yet little is known about its molecular regulation and its cognate receptor, interferon lambda receptor 1 (IFNLR1) in human lung. We hypothesized that the IFNλ signaling axis was active in human lung macrophages. In human alveolar macrophages (HAMs), we observed increased IFNLR1 expression and robust increase in interferon-stimulated gene (ISG) expression in response to IFNλ ligand. While human monocytes express minimal IFNLR1, differentiation of monocytes into macrophages with macrophage colony-stimulating factor (M-CSF) or granulocyte-macrophage colony-stimulating factor (GM-CSF) increased IFNLR1 mRNA, IFNLR1 protein expression, and cellular response to IFNλ ligation. Conversely, in mice, M-CSF or GM-CSF stimulated macrophages failed to produce ISGs in response to related ligands, IFNL2 or IFNL3, suggesting that IFNLR1 signaling in macrophages is species-specific. We next hypothesized that IFNλ signaling was critical in influenza antiviral responses. In primary human airway epithelial cells and precision-cut human lung slices, influenza infection substantially increased IFNλ levels. Pretreatment of both HAMs and differentiated human monocytes with IFNL1 significantly inhibited influenza infection. IFNLR1 knockout in the myeloid cell line, THP-1, exhibited reduced interferon responses to either direct or indirect exposure to influenza infection suggesting the indispensability of IFNLR1 for antiviral responses. These data demonstrate the presence of IFNλ - IFNLR1 signaling axis in human lung macrophages and a critical role of IFNλ signaling in combating influenza infection.


Assuntos
Influenza Humana/imunologia , Interferons/imunologia , Macrófagos Alveolares/imunologia , Animais , Células Cultivadas , Humanos , Macrófagos Alveolares/virologia , Camundongos , Receptores de Interferon/imunologia , Transdução de Sinais/imunologia , Interferon lambda
7.
Comp Med ; 70(6): 471-486, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33323164

RESUMO

Mice are a common animal model for the study of influenza virus A (IAV). IAV infection causes weight loss due to anorexia and dehydration, which can result in early removal of mice from a study when they reach a humane endpoint. To reduce the number of mice prematurely removed from an experiment, we assessed nutritional gel (NG) supplementation as a support strategy for mice infected with mouse-adapted Influenza A/Puerto Rico/8/34 (A/PR/8/34; H1N1) virus. We hypothesized that, compared with the standard of care (SOC), supplementation with NG would reduce weight loss and increase survival in mice infected with IAV without impacting the initial immune response to infection. To assess the effects of NG, male and female C57BL/6J mice were infected with IAV at low, intermediate, or high doses. When compared with SOC, mice given NG showed a significant decrease in the maximal percent weight loss at all viral doses in males and at the intermediate dose for females. Mice supplemented with NG had no deaths for either sex at the intermediate dose and a significant increase in survival in males at the high viral dose. Supplementation with NG did not alter the viral titer or the pulmonary recruitment of immune cells as measured by cell counts and flow cytometry of cells recovered in bronchoalveolar lavage (BAL) fluid in either sex. However, mice given NG had a significant reduction in IL6 and TNFα in BAL fluid and no significant differences in CCL2, IL4, IL10, CXCL1, CXCL2, and VEGF. The results of this study show that as compared with infected SOC mice, infected mice supplemented with NG have reduced weight loss and increased survival, with males showing a greater benefit. These results suggest that NG should be considered as a support strategy and indicate that sex is an important biologic variable in mice infected with IAV.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Animais , Suplementos Nutricionais , Feminino , Humanos , Pulmão , Masculino , Camundongos , Camundongos Endogâmicos C57BL
8.
Front Pharmacol ; 11: 1219, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013356

RESUMO

BACKGROUND: CFTR modulators decrease some etiologies of CF airway inflammation; however, data indicate that non-resolving airway infection and inflammation persist in individuals with CF and chronic bacterial infections. Thus, identification of therapies that diminish airway inflammation without allowing unrestrained bacterial growth remains a critical research goal. Novel strategies for combatting deleterious airway inflammation in the CFTR modulator era require better understanding of cellular contributions to chronic CF airway disease, and how inflammatory cells change after initiation of CFTR modulator therapy. Peripheral blood monocytes, which traffic to the CF airway, can develop both pro-inflammatory and inflammation-resolving phenotypes, represent intriguing cellular targets for focused therapies. This therapeutic approach, however, requires a more detailed knowledge of CF monocyte cellular programming and phenotypes. MATERIAL AND METHODS: In order to characterize the inflammatory phenotype of CF monocytes, and how these cells change after initiation of CFTR modulator therapy, we studied adults (n=10) with CF, chronic airway infections, and the CFTR-R117H mutations before and 7 days after initiation of ivacaftor. Transcriptomes of freshly isolated blood monocytes were interrogated by RNA-sequencing (RNA-seq) followed by pathway-based analyses. Plasma concentrations of cytokines and chemokines were evaluated by multiplex ELISA. RESULTS: RNAseq identified approximately 50 monocyte genes for which basal expression was significantly changed in all 10 subjects after 7 days of ivacaftor. Of these, the majority were increased in expression post ivacaftor, including many genes traditionally associated with enhanced inflammation and immune responses. Pathway analyses confirmed that transcriptional programs were overwhelmingly up-regulated in monocytes after 7 days of ivacaftor, including biological modules associated with immunity, cell cycle, oxidative phosphorylation, and the unfolded protein response. Ivacaftor increased plasma concentrations of CXCL2, a neutrophil chemokine secreted by monocytes and macrophages, and CCL2, a monocyte chemokine. CONCLUSIONS: Our results demonstrate that ivacaftor causes acute changes in blood monocyte transcriptional profiles and plasma chemokines, and suggest that increased monocyte inflammatory signals and changes in myeloid cell trafficking may contribute to changes in airway inflammation in people taking CFTR modulators. To our knowledge, this is the first report investigating the transcriptomic response of circulating blood monocytes in CF subjects treated with a CFTR modulator.

9.
ERJ Open Res ; 6(2)2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32337217

RESUMO

This study demonstrates that initiation of the CFTR modulator ivacaftor in people with cystic fibrosis and susceptible CFTR mutations causes an acute reduction in blood monocyte sensitivity to the key proinflammatory cytokine IFN-γ http://bit.ly/2TeI6LG.

11.
JCI Insight ; 4(23)2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31801908

RESUMO

The MEK1/2-ERK1/2 pathway has been implicated in regulating the inflammatory response to lung injury and infection, and pharmacologic MEK1/2 inhibitor compounds are reported to reduce detrimental inflammation in multiple animal models of disease, in part through modulation of leukocyte responses. However, the specific contribution of myeloid MEK1 in regulating acute lung injury (ALI) and its resolution remain unknown. Here, the role of myeloid Mek1 was investigated in a murine model of LPS-induced ALI (LPS-ALI) by genetic deletion using the Cre-floxed system (LysMCre × Mekfl), and human alveolar macrophages from healthy volunteers and patients with acute respiratory distress syndrome (ARDS) were obtained to assess activation of the MEK1/2-ERK1/2 pathway. Myeloid Mek1 deletion results in a failure to resolve LPS-ALI, and alveolar macrophages lacking MEK1 had increased activation of MEK2 and the downstream target ERK1/2 on day 4 of LPS-ALI. The clinical significance of these findings is supported by increased activation of the MEK1/2-ERK1/2 pathway in alveolar macrophages from patients with ARDS compared with alveolar macrophages from healthy volunteers. This study reveals a critical role for myeloid MEK1 in promoting resolution of LPS-ALI and controlling the duration of macrophage proinflammatory responses.


Assuntos
Lesão Pulmonar Aguda/metabolismo , MAP Quinase Quinase 1/genética , MAP Quinase Quinase 1/metabolismo , Macrófagos Alveolares/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/patologia , Animais , Feminino , Humanos , Imunidade Inata , Inflamação/metabolismo , Lipopolissacarídeos/efeitos adversos , Pulmão/patologia , MAP Quinase Quinase 2/metabolismo , Sistema de Sinalização das MAP Quinases , Macrófagos Alveolares/imunologia , Masculino , Camundongos , Camundongos Knockout , Síndrome do Desconforto Respiratório , Transcriptoma
12.
J Allergy Clin Immunol ; 143(4): 1536-1548, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30445062

RESUMO

BACKGROUND: Macrophage plasticity allows cells to adopt different phenotypes, a property with important implications in disorders such as cystic fibrosis (CF) and asthma. OBJECTIVE: We sought to examine the transcriptional and functional significance of macrophage repolarization from an M1 to an M2 phenotype and assess the role of a common human genetic disorder (CF) and a prototypical allergic disease (asthma) in this transformation. METHODS: Monocyte-derived macrophages were collected from healthy subjects and patients with CF and polarized to an M2 state by using IL-4, IL-10, glucocorticoids, apoptotic PMNs, or azithromycin. We performed transcriptional profiling and pathway analysis for each stimulus. We assessed the ability of M2-repolarized macrophages to respond to LPS rechallenge and clear apoptotic neutrophils and used murine models to determine conserved functional responses to IL-4 and IL-10. We investigated whether M2 signatures were associated with alveolar macrophage phenotypes in asthmatic patients. RESULTS: We found that macrophages exhibit highly diverse responses to distinct M2-polarizing stimuli. Specifically, IL-10 activated proinflammatory pathways and abrogated LPS tolerance, allowing rapid restoration of LPS responsiveness. In contrast, IL-4 enhanced LPS tolerance, dampening proinflammatory responses after repeat LPS challenge. A common theme observed across all M2 stimuli was suppression of interferon-associated pathways. We found that CF macrophages had intact reparative and transcriptional responses, suggesting that macrophage contributions to CF-related lung disease are primarily shaped by their environment. Finally, we leveraged in vitro-derived signatures to show that allergen provocation induces distinct M2 state transcriptional patterns in alveolar macrophages. CONCLUSION: Our findings highlight the diversity of macrophage polarization, attribute functional consequences to different M2 stimuli, and provide a framework to phenotype macrophages in disease states.


Assuntos
Asma/imunologia , Fibrose Cística/imunologia , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Adulto , Animais , Citocinas/imunologia , Feminino , Humanos , Masculino , Camundongos , Fenótipo , Transcrição Gênica , Transcriptoma
13.
Innate Immun ; 24(6): 357-365, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30068264

RESUMO

Matrix metalloproteinases (MMPs) are transcriptionally regulated proteases that have multiple roles in modifying the extracellular matrix (ECM) and inflammatory response. Our previous work identified Mmp28 as a key regulator of inflammation and macrophage polarization during experimental models of pulmonary infection, fibrosis, and chronic smoke exposure. However, the signaling pathways responsible for regulation of macrophage Mmp28 expression remain undefined. This study utilized murine macrophages obtained from wild type, Tlr2-/-, Tlr4-/-, MyD88-/-, Ticam1 Lps2 ( Trifmutant), and Ifnar1-/- mice to test the hypothesis that macrophage Mmp28 expression was dependent on TRIF and type I IFN. Our results support the hypothesis, demonstrating that increased macrophage Mmp28 expression was dependent on type I IFN after LPS and poly(I:C) stimulation. To gain further insight into the function of MMP28, we explored the inflammatory response of macrophages derived from wild type or Mmp28-/- mice to stimulation with poly(I:C). Our data support a role for MMP28 in regulating the macrophage inflammatory response to poly(I:C) because expression of Ccl2, Ccl4, Cxcl10, and Il6 were increased in Mmp28-/- macrophages. Together, these data support a model in which macrophages integrate TRIF- and type I IFN-dependent signaling to coordinate regulation of proteins with the capacity to modify the ECM.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Matriz Extracelular/metabolismo , Inflamação/imunologia , Macrófagos/imunologia , Metaloproteinases da Matriz Secretadas/metabolismo , Animais , Células Cultivadas , Feminino , Regulação da Expressão Gênica , Interferon Tipo I/metabolismo , Lipopolissacarídeos/imunologia , Masculino , Metaloproteinases da Matriz Secretadas/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Poli I-C/imunologia , Transdução de Sinais
14.
Pneumonia (Nathan) ; 9: 13, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28879065

RESUMO

This study was designed to test the therapeutic potential of a MEK1/2 inhibitor (MEKi) in an experimental model of Pseudomonas aeruginosa pneumonia. The study found that treatment with MEKi reduced alveolar neutrophilic inflammation and led to faster recovery of weight compared to carrier-treated mice, without impairing bacterial clearance. Alveolar macrophages isolated from MEKi-treated mice also had increased M2 gene and protein expression, supporting the concept that MEKi modulates in vivo macrophage inflammatory responses. In summary, this report demonstrates the potential of MEKi to promote the resolution of inflammation in vivo during a primary lung infection without impairing bacterial clearance.

15.
Am J Pathol ; 187(6): 1288-1300, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28399390

RESUMO

Chronic obstructive pulmonary disease (COPD) comprises chronic bronchitis and emphysema, and is a leading cause of morbidity and mortality. Because tissue destruction is the prominent characteristic of emphysema, extracellular proteinases, particularly those with elastolytic ability, are often considered to be key drivers in this disease. Several human and mouse studies have implicated roles for matrix metalloproteinases (MMPs), particularly macrophage-derived proteinases, in COPD pathogenesis. MMP-28 is expressed by the pulmonary epithelium and macrophage, and we have found that it regulates macrophage recruitment and polarization. We hypothesized that MMP-28 has contributory roles in emphysema via alteration of macrophage numbers and activation. Because of the established association of emphysema pathogenesis to macrophage influx, we evaluated the inflammatory changes and lung histology of Mmp28-/- mice exposed to 3 and 6 months of cigarette smoke. At earlier time points, we found altered macrophage polarization in the smoke-exposed Mmp28-/- lung consistent with other published findings that MMP-28 regulates macrophage activation. At both 3 and 6 months, Mmp28-/- mice had blunted inflammatory responses more closely resembling nonsmoked mice, with a reduction in neutrophil recruitment and CXCL1 chemokine expression. By 6 months, Mmp28-/- mice were protected from emphysema. These results highlight a previously unrecognized role for MMP-28 in promoting chronic lung inflammation and tissue remodeling induced by cigarette smoke and highlight another potential target to modulate COPD.


Assuntos
Metaloproteinases da Matriz Secretadas/fisiologia , Enfisema Pulmonar/enzimologia , Animais , Líquido da Lavagem Broncoalveolar/citologia , Quimiocinas/metabolismo , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica/métodos , Regulação Enzimológica da Expressão Gênica/fisiologia , Pulmão/enzimologia , Macrófagos Alveolares/enzimologia , Masculino , Metaloproteinases da Matriz Secretadas/deficiência , Metaloproteinases da Matriz Secretadas/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infiltração de Neutrófilos/fisiologia , Pneumonia/enzimologia , Pneumonia/etiologia , Pneumonia/genética , Pneumonia/patologia , Doença Pulmonar Obstrutiva Crônica/enzimologia , Enfisema Pulmonar/etiologia , Enfisema Pulmonar/genética , Enfisema Pulmonar/patologia , Poluição por Fumaça de Tabaco/efeitos adversos
16.
J Immunol ; 198(2): 862-872, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-28003382

RESUMO

Macrophages have important functional roles in regulating the timely promotion and resolution of inflammation. Although many of the intracellular signaling pathways involved in the proinflammatory responses of macrophages are well characterized, the components that regulate macrophage reparative properties are less well understood. We identified the MEK1/2 pathway as a key regulator of macrophage reparative properties. Pharmacological inhibition of the MEK1/2 pathway by a MEK1/2 inhibitor (MEKi) significantly increased expression of IL-4/IL-13 (M2)-responsive genes in murine bone marrow-derived and alveolar macrophages. Deletion of the MEK1 gene using LysMCre+/+Mek1fl/fl macrophages as an alternate approach yielded similar results. MEKi enhanced STAT6 phosphorylation, and MEKi-induced changes in M2 polarization were dependent on STAT6. In addition, MEKi treatment significantly increased murine and human macrophage efferocytosis of apoptotic cells, independent of macrophage polarization and STAT6. These phenotypes were associated with increased gene and protein expression of Mertk, Tyro3, and Abca1, three proteins that promote macrophage efferocytosis. We also studied the effects of MEKi on in vivo macrophage efferocytosis and polarization. MEKi-treated mice had increased efferocytosis of apoptotic polymorphonuclear leukocytes instilled into the peritoneum. Furthermore, administration of MEKi after LPS-induced lung injury led to improved recovery of weight, fewer neutrophils in the alveolar compartment, and greater macrophage M2 polarization. Collectively, these results show that MEK1/2 inhibition is capable of promoting the reparative properties of murine and human macrophages. These studies suggest that the MEK1/2 pathway may be a therapeutic target to promote the resolution of inflammation via modulation of macrophage functions.


Assuntos
MAP Quinase Quinase 1/imunologia , MAP Quinase Quinase 2/imunologia , Macrófagos/imunologia , Fagocitose/imunologia , Transdução de Sinais/imunologia , Animais , Western Blotting , Citometria de Fluxo , Técnicas de Silenciamento de Genes , Humanos , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 2/antagonistas & inibidores , Macrófagos/enzimologia , Camundongos , Reação em Cadeia da Polimerase
17.
Mol Ther ; 24(4): 779-87, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26732878

RESUMO

Inhibition of vascular smooth muscle cell (VSMC) proliferation by drug eluting stents has markedly reduced intimal hyperplasia and subsequent in-stent restenosis. However, the effects of antiproliferative drugs on endothelial cells (EC) contribute to delayed re-endothelialization and late stent thrombosis. Cell-targeted therapies to inhibit VSMC remodeling while maintaining EC health are necessary to allow vascular healing while preventing restenosis. We describe an RNA aptamer (Apt 14) that functions as a smart drug by preferentially targeting VSMCs as compared to ECs and other myocytes. Furthermore, Apt 14 inhibits phosphatidylinositol 3-kinase/protein kinase-B (PI3K/Akt) and VSMC migration in response to multiple agonists by a mechanism that involves inhibition of platelet-derived growth factor receptor (PDGFR)-ß phosphorylation. In a murine model of carotid injury, treatment of vessels with Apt 14 reduces neointimal formation to levels similar to those observed with paclitaxel. Importantly, we confirm that Apt 14 cross-reacts with rodent and human VSMCs, exhibits a half-life of ~300 hours in human serum, and does not elicit immune activation of human peripheral blood mononuclear cells. We describe a VSMC-targeted RNA aptamer that blocks cell migration and inhibits intimal formation. These findings provide the foundation for the translation of cell-targeted RNA therapeutics to vascular disease.


Assuntos
Aptâmeros de Nucleotídeos/farmacologia , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Neointima/terapia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Meia-Vida , Humanos , Camundongos , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/citologia , Neointima/metabolismo , Fosforilação , Ratos
18.
Front Microbiol ; 6: 338, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25999917

RESUMO

The lipopolysaccharide (LPS) and O-antigen polysaccharide capsule structures of Francisella tularensis play significant roles in helping these highly virulent bacteria avoid detection within a host. We previously created pools of F. tularensis mutants that we screened to identify strains that were not reactive to a monoclonal antibody to the O-antigen capsule. To follow up previously published work, we characterize further seven of the F. tularensis Schu S4 mutant strains identified by our screen. These F. tularensis strains carry the following transposon mutations: FTT0846::Tn5, hemH::Tn5, wbtA::Tn5, wzy::Tn5, FTT0673p/prsA::Tn5, manB::Tn5, or dnaJ::Tn5. Each of these strains displayed sensitivity to human serum, to varying degrees, when compared to wild-type F. tularensis Schu S4. By Western blot, only FTT0846::Tn5, wbtA::Tn5, wzy::Tn5, and manB::Tn5 strains did not react to the capsule and LPS O-antigen antibody 11B7, although the wzy::Tn5 strain did have a single O-antigen reactive band that was detected by the FB11 monoclonal antibody. Of these strains, manB::Tn5 and FTT0846 appear to have LPS core truncations, whereas wbtA::Tn5 and wzy::Tn5 had LPS core structures that are similar to the parent F. tularensis Schu S4. These strains were also shown to have poor growth within human monocyte derived macrophages (MDMs) and bone marrow derived macrophages (BMDMs). We examined the virulence of these strains in mice, following intranasal challenge, and found that each was attenuated compared to wild type Schu S4. Our results provide additional strong evidence that LPS and/or capsule are F. tularensis virulence factors that most likely function by providing a stealth shield that prevents the host immune system from detecting this potent pathogen.

19.
PLoS One ; 9(10): e109525, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25295729

RESUMO

Francisella tularensis is a Gram-negative, facultative intracellular pathogen that replicates in the cytosol of macrophages and is the causative agent of the potentially fatal disease tularemia. A characteristic feature of F. tularensis is its limited proinflammatory capacity, but the mechanisms that underlie the diminished host response to this organism are only partially defined. Recently, microRNAs have emerged as important regulators of immunity and inflammation. In the present study we investigated the microRNA response of primary human monocyte-derived macrophages (MDMs) to F. tularensis and identified 10 microRNAs that were significantly differentially expressed after infection with the live vaccine strain (LVS), as judged by Taqman Low Density Array profiling. Among the microRNAs identified, miR-155 is of particular interest as its established direct targets include components of the Toll-like receptor (TLR) pathway, which is essential for innate defense and proinflammatory cytokine production. Additional studies demonstrated that miR-155 acted by translational repression to downregulate the TLR adapter protein MyD88 and the inositol 5'-phosphatase SHIP-1 in MDMs infected with F. tularensis LVS or the fully virulent strain Schu S4. Kinetic analyses indicated that miR-155 increased progressively 3-18 hours after infection with LVS or Schu S4, and target proteins disappeared after 12-18 hours. Dynamic modulation of MyD88 and SHIP-1 was confirmed using specific pre-miRs and anti-miRs to increase and decrease miR-155 levels, respectively. Of note, miR-155 did not contribute to the attenuated cytokine response triggered by F. tularensis phagocytosis. Instead, this microRNA was required for the ability of LVS-infected cells to inhibit endotoxin-stimulated TNFα secretion 18-24 hours after infection. Thus, our data are consistent with the ability of miR-155 to act as a global negative regulator of the inflammatory response in F. tularensis-infected human macrophages.


Assuntos
Regulação para Baixo , Francisella tularensis/fisiologia , Macrófagos/metabolismo , Macrófagos/microbiologia , MicroRNAs/genética , Fator 88 de Diferenciação Mieloide/genética , Adulto , Vacinas Bacterianas , Regulação para Baixo/efeitos dos fármacos , Francisella tularensis/imunologia , Humanos , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/microbiologia , Inositol Polifosfato 5-Fosfatases , Ligantes , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Fator 88 de Diferenciação Mieloide/biossíntese , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases , Monoéster Fosfórico Hidrolases/biossíntese , Monoéster Fosfórico Hidrolases/genética , Biossíntese de Proteínas/efeitos dos fármacos , Receptores Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
20.
Mol Ther ; 22(11): 1910-22, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24954476

RESUMO

Cell-targeted therapies (smart drugs), which selectively control cancer cell progression with limited toxicity to normal cells, have been developed to effectively treat some cancers. However, many cancers such as metastatic prostate cancer (PC) have yet to be treated with current smart drug technology. Here, we describe the thorough preclinical characterization of an RNA aptamer (A9g) that functions as a smart drug for PC by inhibiting the enzymatic activity of prostate-specific membrane antigen (PSMA). Treatment of PC cells with A9g results in reduced cell migration/invasion in culture and metastatic disease in vivo. Importantly, A9g is safe in vivo and is not immunogenic in human cells. Pharmacokinetic and biodistribution studies in mice confirm target specificity and absence of non-specific on/off-target effects. In conclusion, these studies provide new and important insights into the role of PSMA in driving carcinogenesis and demonstrate critical endpoints for the translation of a novel RNA smart drug for advanced stage PC.


Assuntos
Antígenos de Superfície/metabolismo , Aptâmeros de Nucleotídeos/administração & dosagem , Glutamato Carboxipeptidase II/metabolismo , Terapia de Alvo Molecular/métodos , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/terapia , Animais , Aptâmeros de Nucleotídeos/farmacocinética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Masculino , Camundongos , Metástase Neoplásica , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA