Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Mol Neurosci ; 74(1): 24, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38386166

RESUMO

Previous research has found that an adaptive response to ferroptosis involving glutathione peroxidase 4 (GPX4) is triggered after intracerebral hemorrhage. However, little is known about the mechanisms underlying adaptive responses to ferroptosis. To explore the mechanisms underlying adaptive responses to ferroptosis after intracerebral hemorrhage, we used hemin-treated HT22 cells to mimic brain injury after hemorrhagic stroke in vitro to evaluate the antioxidant enzymes and performed bioinformatics analysis based on the mRNA sequencing data. Further, we determined the expression of GSTO2 in hemin-treated hippocampal neurons and in a mouse model of hippocampus-intracerebral hemorrhage (h-ICH) by using Western blot. After hemin treatment, the antioxidant enzymes GPX4, Nrf2, and glutathione (GSH) were upregulated, suggesting that an adaptive response to ferroptosis was triggered. Furthermore, we performed mRNA sequencing to explore the underlying mechanism, and the results showed that 2234 genes were differentially expressed. Among these, ten genes related to ferroptosis (Acsl1, Ftl1, Gclc, Gclm, Hmox1, Map1lc3b, Slc7a11, Slc40a1, Tfrc, and Slc39a14) were altered after hemin treatment. In addition, analysis of the data retrieved from the GO database for the ten targeted genes showed that 20 items on biological processes, 17 items on cellular components, and 19 items on molecular functions were significantly enriched. Based on the GO data, we performed GSEA and found that the glutathione metabolic process was significantly enriched in the hemin phenotype. Notably, the expression of glutathione S-transferase omega (GSTO2), which is involved in glutathione metabolism, was decreased after hemin treatment, and overexpression of Gsto2 decreased lipid reactive oxygen species level in hemin-exposed HT22 cells. In addition, the expression of GSTO2 was also decreased in a mouse model of hippocampus-intracerebral hemorrhage (h-ICH). The decreased expression of GSTO2 in the glutathione metabolic process may be involved in ferroptotic neuronal injury following hemorrhagic stroke.


Assuntos
Glutationa Transferase , Acidente Vascular Cerebral Hemorrágico , Animais , Camundongos , Antioxidantes , Hemorragia Cerebral/genética , Modelos Animais de Doenças , Glutationa , Glutationa Transferase/genética , Hemina/farmacologia , Neurônios , RNA Mensageiro
2.
Nat Prod Rep ; 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37873660

RESUMO

Covering: 2005 to August, 2023Polyamine-containing natural products (NPs) have been isolated from a wide range of terrestrial and marine organisms and most of them exhibit remarkable and diverse activities, including antimicrobial, antiprotozoal, antiangiogenic, antitumor, antiviral, iron-chelating, anti-depressive, anti-inflammatory, insecticidal, antiobesity, and antioxidant properties. Their extraordinary activities and potential applications in human health and agriculture attract increasing numbers of studies on polyamine-containing NPs. In this review, we summarized the source, structure, classification, bioactivities and biosynthesis of polyamine-containing NPs, focusing on the biosynthetic mechanism of polyamine itself and representative polyamine alkaloids, polyamine-containing siderophores with catechol/hydroxamate/hydroxycarboxylate groups, nonribosomal peptide-(polyketide)-polyamine (NRP-(PK)-PA), and NRP-PK-long chain poly-fatty amine (lcPFAN) hybrid molecules.

3.
Cell Biochem Biophys ; 81(1): 7-17, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36627482

RESUMO

Ferroptosis is a newfound mode of regulated cell death that may have potential to associate with prognostic or diagnostic factors in glioma. In this research, 5 genes related to glioma were screened through the FerrDb database, and we analyzed the combination between genes and glioma of survival and prognosis via TCGA, GEPIA, TIMER, and other databases. Survival curve and prognostic analysis showed that the overexpression of NFE2L2 and NOX4, respectively, has a remarkable link with a worse prognosis in glioma. Then, the association between the expression of the two genes and tumor-infiltrating immune cells level was explored based on the GSCA, and the immunity of NFE2L2 and NOX4 based on the TISIDB database was also investigated. In glioma, especially GBM, there is a strong association between gene expression and immune infiltration, even in macrophages, nTreg, and Th2 cells, which play immunosuppressive functions in TME. In conclusion, these results indicate that NFE2L2 and NOX4 could be risk prognosis biomarkers in glioma, and they bound up with immune infiltration and tumor immunity in tumorigenesis.


Assuntos
Ferroptose , Glioma , Humanos , Ferroptose/genética , Prognóstico , Glioma/genética , Carcinogênese , Biomarcadores , Biomarcadores Tumorais/genética , NADPH Oxidase 4/genética , Fator 2 Relacionado a NF-E2/genética
4.
Front Plant Sci ; 13: 1022476, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36388555

RESUMO

Edeines are a group of non-ribosomal antibacterial peptides produced by Brevibacillus brevis. Due to the significant antibacterial properties of edeines, increasing edeine yield is of great interest in biomedical research. Herein, we identified that EdeB, a member of the ParB protein family, significantly improved edeine production in B. brevis. First, overexpression of edeB in B. brevis X23 increased edeine production by 92.27%. Second, in vitro bacteriostasis experiment showed that edeB-deletion mutant exhibited less antibacterial activity. Third, RT-qPCR assay demonstrated that the expression of edeA, edeQ, and edeK, which are key components of the edeine biosynthesis pathway, in edeB-deletion mutant X23(ΔedeB) was significantly lower than that in wild-type B. brevis strain X23. Finally, electrophoretic mobility shift assay (EMSA) showed that EdeB directly bound to the promoter region of the edeine biosynthetic gene cluster (ede BGC), suggesting that EdeB improves edeine production through interaction with ede BGC in B. brevis.

5.
Microb Biotechnol ; 15(2): 577-589, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34310825

RESUMO

Edeines, a group of cationic antimicrobial peptides produced by the soil bacterium Brevibacillus, have broad biological effects, such as antimicrobial, anticancer and immunosuppressive activities. However, the yield of edeines in wild-type (WT) Brevibacillus is extremely low, and chemical synthesis of edeines is a time-consuming process. Genetic engineering has proven to be an effective approach to produce antibiotics with high yield. In this study, the edeine biosynthetic gene cluster (ede BGC), which is involved in edeine production, was identified and characterized in Brevibacillus brevis X23. To improve edeine production in B. brevis X23, the ede BGC promoter was replaced with six different promoters, Pmwp , Pspc , PxylA , Pshuttle-09 , Pgrac or P43 , through double-crossover homologous recombination. The new promoters significantly increased the expression of the ede BGC as well as edeine production by 2.9 ± 0.4 to 20.5 ± 1.2-fold and 3.6 ± 0.1to 8.7 ± 0.7-fold respectively. The highest yield of edeines (83.6 mg l-1 ) was obtained in B. brevis X23 with the Pmwp promoter. This study provides a practical approach for producing high yields of edeines in B. brevis.


Assuntos
Bacillus , Brevibacillus , Antibacterianos/metabolismo , Bacillus/metabolismo , Brevibacillus/genética , Brevibacillus/metabolismo , Edeína/química , Edeína/metabolismo
6.
Neuropsychiatr Dis Treat ; 17: 671-680, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33727816

RESUMO

OBJECTIVE: Dexmedetomidine, an α2-adrenergic receptor agonist, mitigates cognitive dysfunction in elderly patients after surgery with general anesthesia. However, the underlying mechanism by which dexmedetomidine reduces cognitive dysfunction remains to be fully elucidated. The aim of this study was to investigate the effects of dexmedetomidine on lipopolysaccharide (LPS)-induced neuronal dysfunction in cultured hippocampal neurons. METHODS: LPS, in the presence and absence of dexmedetomidine, was applied to cultured hippocampal neurons to mimic post-surgical inflammation. Neuronal morphology, including neurite outgrowth and synaptic transmission, was observed, and miniature excitatory postsynaptic currents were recorded by electrophysiological patch-clamp. RESULTS: LPS significantly impaired neurite outgrowth in hippocampal neurons in a concentration- and time-dependent manner, which was reversed by dexmedetomidine treatment. Electrophysiological patch-clamp results showed that LPS induced synaptic transmission dysfunction, which was restored after dexmedetomidine addition. Furthermore, Western blotting assays showed that LPS suppressed the AKT/GSK-3ß/CRMP-2 signaling pathway and dexmedetomidine countered the inhibitory effect of LPS by re-activating this pathway. CONCLUSION: In general, dexmedetomidine protected against the effects of LPS-induced hippocampal neuron damage, including neurite outgrowth and synaptic transmission. Overall, dexmedetomidine modulated the AKT/GSK-3ß/CRMP-2 signaling pathway to alleviate LPS-induced neurological dysfunction.

7.
Artif Organs ; 45(6): 616-624, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33270261

RESUMO

Nerve growth factor (NGF) is important for peripheral nerve regeneration. However, its short half-life and rapid diffusion in body fluids limit its clinical efficacy. Collagen has favorable biocompatibility and biodegradability, and weak immunogenicity. Because it possesses an NGF binding domain, we cross-linked heparin to collagen tubes to construct nerve guidance conduits for delivering NGF. The conduits were implanted to bridge a facial nerve defect in rats. Histological and functional analyses were performed to assess the effect of the nerve guidance conduit on facial nerve regeneration. Heparin enhanced the binding of NGF to collagen while retaining its bioactivity. Also, the nerve guidance conduit significantly promoted axonal growth and Schwan cell proliferation at 12 weeks after surgery. The nerve regeneration and functional recovery outcomes using the nerve guidance conduit were similar to those of autologous nerve grafting. Therefore, the nerve guidance conduit may promote safer nerve regeneration.


Assuntos
Colágeno/farmacologia , Nervo Facial/efeitos dos fármacos , Heparina/farmacologia , Fator de Crescimento Neural/farmacologia , Regeneração Nervosa/efeitos dos fármacos , Próteses e Implantes , Animais , Proliferação de Células , Feminino , Regeneração Nervosa/fisiologia , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica
8.
Front Microbiol ; 11: 593217, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33363524

RESUMO

Bacteria of the genus Saccharopolyspora produce important polyketide antibiotics, including erythromycin A (Sac. erythraea) and spinosad (Sac. spinosa). We herein report the development of an industrial erythromycin-producing strain, Sac. erythraea HOE107, into a host for the heterologous expression of polyketide biosynthetic gene clusters (BGCs) from other Saccharopolyspora species and related actinomycetes. To facilitate the integration of natural product BGCs and auxiliary genes beneficial for the production of natural products, the erythromycin polyketide synthase (ery) genes were replaced with two bacterial attB genomic integration sites associated with bacteriophages ϕC31 and ϕBT1. We also established a highly efficient conjugation protocol for the introduction of large bacterial artificial chromosome (BAC) clones into Sac. erythraea strains. Based on this optimized protocol, an arrayed BAC library was effectively transferred into Sac. erythraea. The large spinosad gene cluster from Sac. spinosa and the actinorhodin gene cluster from Streptomyces coelicolor were successfully expressed in the ery deletion mutant. Deletion of the endogenous giant polyketide synthase genes pkeA1-pkeA4, the product of which is not known, and the flaviolin gene cluster (rpp) from the bacterium increased the heterologous production of spinosad and actinorhodin. Furthermore, integration of pJTU6728 carrying additional beneficial genes dramatically improved the yield of actinorhodin in the engineered Sac. erythraea strains. Our study demonstrated that the engineered Sac. erythraea strains SLQ185, LJ161, and LJ162 are good hosts for the expression of heterologous antibiotics and should aid in expression-based genome-mining approaches for the discovery of new and cryptic antibiotics from Streptomyces and rare actinomycetes.

9.
Appl Environ Microbiol ; 86(2)2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31704680

RESUMO

Hybrubins are "unnatural" alkaloids with the same 4'-methoxy-2,2'-bipyrrole-5'-methine moiety found in prodiginines and a different ring derived from tetramic acids. Here, we demonstrated that RedH, a homologue of prodigiosin synthetase PigC, was responsible for the biosynthesis of hybrubins A and B in Streptomyces lividansIn vitro reactions indicated that RedH and PigC catalyzed the intermolecular condensation between 4'-methoxy-2,2'-bipyrrole-5'-carbaldehyde (MBC) and (Z)-5-ethylidenetetramic acid (ETA) to produce hybrubin B. Moreover, we demonstrated that RedH and PigC activated MBC via phosphorylation of the aldehyde group to form an intermediate Pi-MBC and that the subsequent condensation between Pi-MBC and (Z)-5-ethylidenetetramic acid occurs in a nonenzymatic way.IMPORTANCE Hybrubins are an emerging class of prodiginines possessing a new C ring derived from 5'-substituted tetramic acids and the methylene bridge connecting the C ring at a different position. We have supposed that condensation between 4'-methoxy-2,2'-bipyrrole-5'-carbaldehyde (MBC) and 5-ethylidenetetramic acid (ETA) yields the hybrid natural products hybrubins, which was proposed to be catalyzed by the undecylprodigiosin synthetase RedH. However, it is doubted whether RedH is able to catalyze another type of condensation between MBC and tetramic acids. In this study, we have demonstrated that the MBC-ETA condensation proceeds through RedH/PigC-catalyzed enzymatic activation of MBC via phosphorylation and a nonenzymatic condensation of Pi-MBC with ETA. Since MBC analogues have been shown to be accepted by PigC, more hybrubin analogues might be produced by using combinations of MBC analogues and other tetramic acids in future studies.


Assuntos
Proteínas de Bactérias/genética , Prodigiosina/análogos & derivados , Prodigiosina/biossíntese , Streptomyces lividans/metabolismo , Proteínas de Bactérias/metabolismo , Fosforilação , Prodigiosina/metabolismo
10.
Front Microbiol ; 9: 3042, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619133

RESUMO

Streptomyces lividans is a suitable host for the heterologous expression of biosynthetic gene clusters (BGCs) from actinomycetes to discover "cryptic" secondary metabolites. To improve the heterologous expression of BGCs, herein we optimized S. lividans strain SBT5 via the stepwise integration of three global regulatory genes and two codon-optimized multi-drug efflux pump genes and deletion of a negative regulatory gene, yielding four engineered strains. All optimization steps were observed to promote the heterologous production of polyketides, non-ribosomal peptides, and hybrid antibiotics. The production increments of these optimization steps were additional, so that the antibiotic yields were several times or even dozens of times higher than the parent strain SBT5 when the final optimized strain, S. lividans LJ1018, was used as the heterologous expression host. The heterologous production of these antibiotics in S. lividans LJ1018 and GX28 was also much higher than in the strains from which the BGCs were isolated. S. lividans LJ1018 and GX28 markedly promoted the heterologous production of secondary metabolites, without requiring manipulation of gene expression components such as promoters on individual gene clusters. Therefore, these strains are well-suited as heterologous expression hosts for secondary metabolic BGCs. In addition, we successfully conducted high-throughput library expression and functional screening (LEXAS) of one bacterial artificial chromosome library and two cosmid libraries of three Streptomyces genomes using S. lividans GX28 as the library-expression host. The LEXAS experiments identified clones carrying intact BGCs sufficient for the heterologous production of piericidin A1, murayaquinone, actinomycin D, and dehydrorabelomycin. Notably, due to lower antibiotic production, the piericidin A1 BGC had been overlooked in a previous LEXAS screening using S. lividans SBT5 as the expression host. These results demonstrate the feasibility and superiority of S. lividans GX28 as a host for high-throughput screening of genomic libraries to mine cryptic BGCs and bioactive compounds.

11.
Cell Chem Biol ; 24(7): 881-891.e4, 2017 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-28712746

RESUMO

Bacterial aromatic polyketides are a group of natural products synthesized by polyketide synthases (PKSs) that show diverse structures and biological activities. They are structurally subclassified into linear, angular, and discoid aromatic polyketides, the formation of which is commonly determined by the shaping and folding of the poly-ß-keto intermediates under the concerted actions of the minimal PKSs, cyclases and ketoreductases. Murayaquinone, found in several streptomycetes, possesses an unusual tricyclic angular aromatic polyketide core containing a 9,10-phenanthraquinone. In this study, genes essential for murayaquinone biosynthesis were identified, and a linear anthraoxirene intermediate was discovered. A unique biosynthetic model for the angular aromatic polyketide formation was discovered and confirmed through in vivo and in vitro studies. Three oxidoreductases, MrqO3, MrqO6, and MrqO7, were identified to catalyze the conversion of the linear aromatic polyketide intermediate into the final angularly arranged framework, which exemplifies a novel strategy for the biosynthesis of angular aromatic polyketides.


Assuntos
Oxirredutases/metabolismo , Fenantrenos/metabolismo , Policetídeos/metabolismo , Quinonas/metabolismo , Antracenos/química , Antracenos/metabolismo , Biocatálise , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Família Multigênica , Oxirredutases/genética , Fenantrenos/química , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Policetídeos/química , Quinonas/química , Streptomyces/química , Streptomyces/metabolismo , Streptomyces lividans/metabolismo
12.
Vet Microbiol ; 196: 44-49, 2016 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-27939154

RESUMO

Pasteurella multocida capsular type A causes respiratory disease in cattle. P. multocida virulence gene expression patterns, especially among different virulent isolates, during in vitro and in vivo growth are poorly understood. Here we show that the highly virulent bovine P. multocida capsular type A isolate PmCQ2 exhibits a significantly higher growth rate in mice, as compared with a strain of lower virulence, P. multocida capsular type A isolate PmCQ6. Among the six known and potential virulence genes (ompA, ompH, pfhB2, hasR, pm0979, and pm0442) investigated, most genes were expressed more highly in both isolates when grown in vivo as compared with in vitro, with ompH and pm0442 having the highest magnitude of expression. Virulence gene expression was higher in PmCQ6 than in PmCQ2 during in vitro growth. However, in mice, most virulence genes were expressed more highly in PmCQ2 as compared with PmCQ6. Virulence gene expression was highest in the liver and lowest in the lung, but was uncorrelated to bacterial loads. This study indicates that individual pathogenic capacity of P. multocida isolates is associated with the virulence gene expression patterns in vivo growth but not in vitro, and the investigation of virulence gene expression in pathogen should be performed in vivo.


Assuntos
Doenças dos Bovinos/microbiologia , Regulação Bacteriana da Expressão Gênica , Infecções por Pasteurella/veterinária , Pasteurella multocida/patogenicidade , Fatores de Virulência/genética , Animais , Carga Bacteriana , Bovinos , Pulmão/microbiologia , Camundongos , Infecções por Pasteurella/microbiologia , Pasteurella multocida/genética , Virulência/genética
13.
Metab Eng ; 38: 418-426, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27746324

RESUMO

Many high-value secondary metabolites are assembled by very large multifunctional polyketide synthases or non-ribosomal peptide synthetases encoded by giant genes, for instance, natamycin production in an industrial strain of Streptomyces gilvosporeus. In this study, a large operon reporter-based selection system has been developed using the selectable marker gene neo to report the expression both of the large polyketide synthase genes and of the entire gene cluster, thereby facilitating the selection of natamycin-overproducing mutants by iterative random mutagenesis breeding. In three successive rounds of mutagenesis and selection, the natamycin titer was increased by 110%, 230%, and 340%, respectively, and the expression of the whole biosynthetic gene cluster was correspondingly increased. An additional copy of the natamycin gene cluster was found in one overproducer. These findings support the large operon reporter-based selection system as a useful tool for the improvement of industrial strains utilized in the production of polyketides and non-ribosomal peptides.


Assuntos
Genes Reporter/genética , Melhoramento Genético/métodos , Engenharia Metabólica/métodos , Natamicina/biossíntese , Óperon/genética , Policetídeo Sintases/genética , Streptomyces/fisiologia , Vias Biossintéticas/genética , Perfilação da Expressão Gênica/métodos , Análise do Fluxo Metabólico/métodos , Redes e Vias Metabólicas/genética , Família Multigênica/genética , Natamicina/isolamento & purificação , Especificidade da Espécie , Streptomyces/classificação
14.
Appl Environ Microbiol ; 80(24): 7473-83, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25239907

RESUMO

Lipstatin, isolated from Streptomyces toxytricini as a potent and selective inhibitor of human pancreatic lipase, is a precursor for tetrahydrolipstatin (also known as orlistat, Xenical, and Alli), the only FDA-approved antiobesity medication for long-term use. Lipstatin features a 2-hexyl-3,5-dihydroxy-7,10-hexadecadienoic-ß-lactone structure with an N-formyl-l-leucine group attached as an ester to the 5-hydroxy group. It has been suggested that the α-branched 3,5-dihydroxy fatty acid ß-lactone moiety of lipstatin in S. toxytricini is derived from Claisen condensation between two fatty acid substrates, which are derived from incomplete oxidative degradation of linoleic acid based on feeding experiments. In this study, we identified a six-gene operon (lst) that was essential for the biosynthesis of lipstatin by large-deletion, complementation, and single-gene knockout experiments. lstA, lstB, and lstC, which encode two ß-ketoacyl-acyl carrier protein synthase III homologues and an acyl coenzyme A (acyl-CoA) synthetase homologue, were indicated to be responsible for the generation of the α-branched 3,5-dihydroxy fatty acid backbone. Subsequently, the nonribosomal peptide synthetase (NRPS) gene lstE and the putative formyltransferase gene lstF were involved in decoration of the α-branched 3,5-dihydroxy fatty acid chain with an N-formylated leucine residue. Finally, the 3ß-hydroxysteroid dehydrogenase-homologous gene lstD might be responsible for the reduction of the ß-keto group of the biosynthetic intermediate, thereby facilitating the formation of the unique ß-lactone ring.


Assuntos
Proteínas de Bactérias/genética , Inibidores Enzimáticos/metabolismo , Lactonas/metabolismo , Lipase/antagonistas & inibidores , Óperon , Streptomyces/metabolismo , Proteínas de Bactérias/metabolismo , Vias Biossintéticas , Humanos , Streptomyces/enzimologia , Streptomyces/genética
15.
Peptides ; 30(10): 1816-21, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19619601

RESUMO

Peptide aptamers are molecules which can specifically bind to a given target protein and have the potential to selectively block the function of the target protein. It has been reported that a peptide aptamer (C1-1) identified from a randomized expression library specifically bound to the core protein of hepatitis B virus and inhibited viral capsid formation and DNA replication in vitro. Adenoviral systems are popular platforms for reliable gene delivery and high-level transient expression in any mammalian cell type in vitro, and have a natural tropism for the liver after systemic administration. In the present study, we explored the feasibility of gene therapy against HBV infection with adenoviral system, and found that systematic administration of recombinant adenovirus encoding the peptide aptamer (C1-1) significantly inhibited viral capsid formation, HBV DNA replication and virion production in vivo. These results suggest an efficient antiviral treatment against HBV infection by delivery of anti-HBV peptide aptamer with recombinant adenovirus.


Assuntos
Adenoviridae/genética , Aptâmeros de Peptídeos , Replicação do DNA , DNA Viral/metabolismo , Vírus da Hepatite B/fisiologia , Proteínas do Core Viral/metabolismo , Adenoviridae/metabolismo , Animais , Aptâmeros de Peptídeos/genética , Aptâmeros de Peptídeos/metabolismo , Linhagem Celular , DNA Viral/genética , Terapia Genética/métodos , Vetores Genéticos , Vírus da Hepatite B/genética , Humanos , Camundongos , Camundongos Transgênicos , Proteínas do Core Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA