Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Neurol Sci ; 45(4): 1707-1717, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37940750

RESUMO

BACKGROUND AND OBJECTIVES: Myasthenia gravis (MG) is an autoimmune disease affecting the neuromuscular junction. No cohort study has investigated the efficacy of inactivated vaccines in patients with MG. MATERIALS AND METHODS: This prospective observational cohort study included healthy controls (HCs) and patients with MG with or without immunosuppressive treatment. Vaccination occurred between May and December 2021. Patients with MG were subjected to a clinical scale assessment for disease severity. The neutralization antibodies (Nabs) levels were measured in all participants using the pseudovirus neutralization assay. RESULTS: Twenty-one patients (Female/Male:10/11); age median [interquartile range (IQR)]: 43 [30, 56]) were included in this study. Two patients (2/21) were lost during follow-up after enrollment. No sustained vaccine-related adverse effects occurred in any visit of patients with MG. No exacerbation of MG was observed. Acetylcholine receptor antibody (AChR-Ab) levels showed no statistically significant changes between the first and second visit (median [IQR]: 2.22 [0.99, 2.63] nmol/L vs. 1.54 [1.07, 2.40] nmol/L, p = 0.424). However, levels of AChR-Ab decreased at the third visit (median [IQR]: 2.22 [0.96, 2.70] nmol/L vs. 1.69 [0.70, 1.85] nmol/L, p = 0.011). No statistically significant difference in Nabs levels was found between HCs and patients with MG (median [IQR]: 102.89 [33.13, 293.86] vs. 79.29 [37.50, 141.93], p = 0.147). DISCUSSION: The safety of the SARS-CoV-2 inactivated vaccine was reconfirmed in this study. No significant difference in Nabs level was found between patients with MG and HCs. Nabs levels correlated with AChR-Ab levels before vaccination and ΔAChR-Ab levels.


Assuntos
COVID-19 , Miastenia Gravis , Adulto , Feminino , Humanos , Masculino , Estudos de Coortes , Vacinas contra COVID-19/efeitos adversos , Miastenia Gravis/tratamento farmacológico , Estudos Prospectivos , SARS-CoV-2 , Vacinas de Produtos Inativados/efeitos adversos , Pessoa de Meia-Idade
2.
J Med Virol ; 95(10): e29189, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37855689

RESUMO

Infectious diseases remain a major global issue in public health. It is important to develop rapid, sensitive, and accurate diagnostic methods to detect pathogens and their mutations. Cas12f1 is an exceptionally compact RNA-guided nuclease and have the potential to fulfill the clinical needs. Based on the interaction between crRNA-SSDNA binary sequence and Cas12f1, here, we addressed the essential features that determine the recognition ability of CRISPR-Cas12f1 single-nucleotide polymorphism (SNP), such as the length of spacer region and the base pairing region that determines the trans-cleavage of ssDNA. A fine-tuning spacer design strategy is also proposed to enhance the SNP recognition capability of CRISPR-Cas12f1. The optimized spacer confers the Cas12f1 system a strong SNP identification capability for viral or bacterial drug-resistance mutations, with a specificity ratio ranging from 19.63 to 110.20 and an admirable sensitivity up to 100  copy/µL. Together, the spacer screening and CRISPR-Cas12f1 based SNP identification method, is sensitive and versatile, and will have a wide application prospect in pathogen DNA mutation diagnosis and other mutation profiling.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Polimorfismo de Nucleotídeo Único , Humanos , RNA/genética , DNA de Cadeia Simples/genética , Mutação
3.
Genes Dis ; 10(3): 1019-1028, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37396526

RESUMO

Little is known about the difference in durability of HBsAg seroclearance induced by nucleoside analogs (NAs) or by interferon (IFN). A real-world, retrospective cohort study was conducted. Patients were assigned into two groups: NAs monotherapy-induced HBsAg seroclearance subjects and IFN monotherapy induced-HBsAg seroclearance subjects. A total of 198 subjects, comprised by 168 NAs monotherapy-induced and 30 IFN monotherapy-induced, who achieved HBsAg seroclearance were included in this study. The one-year probabilities of confirmed HBsAg seroclearance were significantly different in patients with NAs monotherapy and IFN monotherapy (0.960 (with 95% CI 0.922-0.999) vs. 0.691 (with 95% CI 0.523-0.913), log-rank-P = 4.04e-4). 73.3% (11 of 15) HBsAg recurrence occurred within one year after HBsAg seroclearance. The one-year probabilities of confirmed HBsAg seroclearance were higher in IFN monotherapy patients with anti-HBs than in IFN monotherapy patients without anti-HBs (0.839 (with 95% CI 0.657-1.000) vs. 0.489 (with 95% CI 0.251-0.953), log-rank test, P = 0.024). Our study thus provided novel insights into the durability of HBsAg seroclearance induced by NAs or IFN monotherapy. In particular, the HBsAg seroreversion rate was relatively high in IFN monotherapy subjects. The presence of anti-HBs was significantly correlated with a longer durability of functional cure induced by IFN treatment. And one-year follow-up in HBsAg seroclearance achieved individuals is proper for averting HBsAg seroreversion and other liver disease.

4.
Antiviral Res ; 211: 105552, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737008

RESUMO

HBV cccDNA is the persistent form of viral genome, which exists in host cell nucleus as an episomal minichromosome decorated with histone and non-histone proteins. cccDNA is the authentic viral transcription template and resistant to current antivirals. Growing evidence shows that the transcriptional activity of cccDNA minichromosome undergoes epigenetic regulations, suggesting a new perspective for anti-cccDNA drug development through targeting histone modifications. In this study, we screened an epigenetic compound library in the cccDNA reporter cell line HepBHAe82, which produces the HA-tagged HBeAg in a cccDNA-dependent manner. Among the obtained hits, a bromodomain-containing protein 4 (BRD4) inhibitor MS436 exhibited marked inhibition of cccDNA transcription in both HBV stable cell line HepAD38 and HepG2-NTCP or primary human hepatocyte infection system under noncytotoxic concentrations. Chromatin immunoprecipitation (ChIP) assay demonstrated that MS436 dramatically reduced the enrichment of H3K27ac, an activating histone modification pattern, on cccDNA minichromosome. RNAseq differential analysis showed that MS436 does not drastically change host transcriptome or induce any known anti-HBV factors/pathways, indicating a direct antiviral effect of MS436 on cccDNA minichromosome. Interestingly, the MS436-mediated inhibition of cccDNA transcription is accompanied by cccDNA destabilization in HBV infection and a recombinant cccDNA system, indicating that BRD4 activity may also play a role in cccDNA maintenance. Furthermore, depletion of BRD4 by siRNA knockdown or PROTAC degrader resulted in cccDNA inhibition in HBV-infected HepG2-NTCP cells, further validating BRD4 as an antiviral target. Taken together, our study has demonstrated the practicability of HepBHAe82-based anti-HBV drug screening system and provided a proof-of-concept for targeting HBV cccDNA with epigenetic compounds.


Assuntos
Vírus da Hepatite B , Hepatite B , Humanos , Antivirais/farmacologia , Proteínas Nucleares/metabolismo , Fatores de Transcrição/genética , Replicação Viral , DNA Viral/genética , DNA Circular/metabolismo , Histonas/metabolismo , Epigênese Genética , Proteínas de Ciclo Celular/metabolismo
5.
Eur J Clin Microbiol Infect Dis ; 41(9): 1155-1163, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35927536

RESUMO

Coronavirus disease 2019 (COVID-19) is a global public health concern. The purpose of this study was to investigate the association between genetic variants and SARS-CoV-2 infection and the COVID-19 severity in Chinese population. A total of 256 individuals including 87 symptomatic patients (tested positive for SARS-CoV-2), 84 asymptomatic cases, and 85 close contacts of confirmed patients (tested negative for SARS-CoV-2) were recruited from February 2020 to May 2020. We carried out the whole exome genome sequencing between the individuals and conducted a genetic association study for SARS-CoV-2 infection and the COVID-19 severity. In total, we analyzed more than 100,000 single-nucleotide polymorphisms. The genome-wide association study suggested potential correlation between genetic variability in POLR2A, ANKRD27, MAN1A2, and ERAP1 genes and SARS-CoV-2 infection susceptibility. The most significant gene locus associated with SARS-CoV-2 infection was located in POLR2A (p = 5.71 × 10-6). Furthermore, genetic variants in PCNX2, CD200R1L, ZMAT3, PLCL2, NEIL3, and LINC00700 genes (p < 1 × 10-5) were closely associated with the COVID-19 severity in Chinese population. Our study confirmed that new genetic variant loci had significant association with SARS-CoV-2 infection and the COVID-19 severity in Chinese population, which provided new clues for the studies on the susceptibility of SARS-CoV-2 infection and the COVID-19 severity. These findings may give a better understanding on the molecular pathogenesis of COVID-19 and genetic basis of heterogeneous susceptibility, with potential impact on new therapeutic options.


Assuntos
COVID-19 , Aminopeptidases , COVID-19/epidemiologia , COVID-19/genética , China/epidemiologia , Estudo de Associação Genômica Ampla , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Antígenos de Histocompatibilidade Menor , Polimorfismo de Nucleotídeo Único , SARS-CoV-2/genética
6.
Signal Transduct Target Ther ; 7(1): 261, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35915083

RESUMO

Apolipoprotein E (APOE) plays a pivotal role in lipid including cholesterol metabolism. The APOE ε4 (APOE4) allele is a major genetic risk factor for Alzheimer's and cardiovascular diseases. Although APOE has recently been associated with increased susceptibility to infections of several viruses, whether and how APOE and its isoforms affect SARS-CoV-2 infection remains unclear. Here, we show that serum concentrations of APOE correlate inversely with levels of cytokine/chemokine in 73 COVID-19 patients. Utilizing multiple protein interaction assays, we demonstrate that APOE3 and APOE4 interact with the SARS-CoV-2 receptor ACE2; and APOE/ACE2 interactions require zinc metallopeptidase domain of ACE2, a key docking site for SARS-CoV-2 Spike protein. In addition, immuno-imaging assays using confocal, super-resolution, and transmission electron microscopies reveal that both APOE3 and APOE4 reduce ACE2/Spike-mediated viral entry into cells. Interestingly, while having a comparable binding affinity to ACE2, APOE4 inhibits viral entry to a lesser extent compared to APOE3, which is likely due to APOE4's more compact structure and smaller spatial obstacle to compete against Spike binding to ACE2. Furthermore, APOE ε4 carriers clinically correlate with increased SARS-CoV-2 infection and elevated serum inflammatory factors in 142 COVID-19 patients assessed. Our study suggests a regulatory mechanism underlying SARS-CoV-2 infection through APOE interactions with ACE2, which may explain in part increased COVID-19 infection and disease severity in APOE ε4 carriers.


Assuntos
COVID-19 , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/genética , Apolipoproteína E3/metabolismo , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Sítios de Ligação , COVID-19/genética , Humanos , Inflamação/genética , Ligação Proteica , Glicoproteína da Espícula de Coronavírus
7.
J Biotechnol ; 357: 100-107, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-35963591

RESUMO

Caspases are a family of evolutionary conserved cysteine proteases that play key roles in programmed cell death and inflammation. Among the methods for the detection of caspase activity, biosensors based on luciferases have advantages in genetical encoding and convenience in assay. In this study, we constructed a new set of caspase biosensors based on NanoLuc luciferase. This kind of sensors, named NanoLock, work in dark-to-bright model, with the help of a NanoLuc quencher peptide (HiBiT-R/D) mutated from HiBiT. Optimized NanoLock responded to proteases with high signal to noise ratio (S/N), 1233-fold activation by tobacco etch virus protease in HEK293 cells and > 500-fold induction to caspase 3 in vitro. We constructed NanoLocks for the detection of caspase 1, 3, 6, 7, 8, 9, and 10, and assays in HEK293 cells demonstrated that these sensors performed better than commercial kits in the aspect of S/N and convenience. We further established a cell line stably expressing NanoLock-casp 6 and provided a proof-of-concept for the usage of this cell line in the high throughput screening of caspase 6 modulator.


Assuntos
Apoptose , Caspases , Caspase 3 , Caspases/genética , Células HEK293 , Humanos , Luciferases/genética , Luciferases/metabolismo
8.
J Med Virol ; 94(12): 5691-5701, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35906179

RESUMO

Immune responses elicited by viral infection or vaccination play key roles in the viral elimination and the prevention of reinfection, as well as the protection of healthy persons. As one of the most widely used Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines, there have been increasing concerns about the necessity of additional doses of inactivated vaccines, due to the waning immune response several months after vaccination. To further optimize inactivated SARS-CoV-2 vaccines, we compared immune responses to SARS-CoV-2 elicited by natural infection and immunization with inactivated vaccines in the early phase. We observed the lower antibody levels against SARS-CoV-2 spike (S) and nucleocapsid (N) proteins in the early phase of postvaccination with a slow increase, compared to the acute phase of SARS-CoV-2 natural infection. Specifically, IgA antibodies have the most significant differences. Moreover, we further analyzed cytokine expression between these two groups. A wide variety of cytokines presented high expression in the infected individuals, while a few cytokines were elicited by inactivated vaccines. The differences in antibody responses and cytokine levels between natural SARS-CoV-2 infection and vaccination with the inactivated vaccines may provide implications for the optimization of inactivated SARS-CoV-2 vaccines and the additional application of serological tests.


Assuntos
COVID-19 , Vacinas Virais , Anticorpos Antivirais , Formação de Anticorpos , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Citocinas , Humanos , Imunoglobulina A , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacinação , Vacinas de Produtos Inativados
9.
Chem Commun (Camb) ; 58(55): 7618-7621, 2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35730730

RESUMO

We develop a CRISPR-Cas13a triggered catalytic hairpin assembly (CATCH) approach for accurate and impartial identification of variants by integrating the fusion gene-selected recognition of CRISPR-Cas13a with collateral cleavage-assisted catalytic hairpin assembly amplification. This approach achieved an accuracy of 100% in a pilot experiment involving 34 clinical samples.


Assuntos
Sistemas CRISPR-Cas , Transcriptoma , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas
10.
Front Microbiol ; 13: 847373, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35633684

RESUMO

Objectives: CRISPR-Cas13a system-based nucleic acid detection methods are reported to have rapid and sensitive DNA detection. However, the screening strategy for crRNAs that enables CRISPR-Cas13a single-base resolution DNA detection of human pathogens remains unclear. Methods: A combined rational design and target mutation-anchoring CRISPR RNA (crRNA) screening strategy was proposed. Results: A set of crRNAs was found to enable the CRISPR-Cas13 system to dramatically distinguish fluroquinolone resistance mutations in clinically isolated Mycobacterium tuberculosis strains from the highly homologous wild type, with a signal ratio ranging from 8.29 to 38.22 in different mutation sites. For the evaluation of clinical performance using genomic DNA from clinically isolated M. tuberculosis, the specificity and sensitivity were 100 and 91.4%, respectively, compared with culture-based phenotypic assays. Conclusion: These results demonstrated that the CRISPR-Cas13a system has potential for use in single nucleotide polymorphism (SNP) detection after tuning crRNAs. We believe this crRNA screening strategy will be used extensively for early drug resistance monitoring and guidance for clinical treatment.

11.
Biosens Bioelectron ; 209: 114226, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35413624

RESUMO

Protein sensors based on allosteric enzymes responding to target binding with rapid changes in enzymatic activity are potential tools for homogeneous assays. However, a high signal-to-noise ratio (S/N) is difficult to achieve in their construction. A high S/N is critical to discriminate signals from the background, a phenomenon that might largely vary among serum samples from different individuals. Herein, based on the modularized luciferase NanoLuc, we designed a novel biosensor called NanoSwitch. This sensor allows direct detection of antibodies in 1 µl serum in 45 min without washing steps. In the detection of Flag and HA antibodies, NanoSwitches respond to antibodies with S/N ratios of 33-fold and 42-fold, respectively. Further, we constructed a NanoSwitch for detecting SARS-CoV-2-specific antibodies, which showed over 200-fold S/N in serum samples. High S/N was achieved by a new working model, combining the turn-off of the sensor with human serum albumin and turn-on with a specific antibody. Also, we constructed NanoSwitches for detecting antibodies against the core protein of hepatitis C virus (HCV) and gp41 of the human immunodeficiency virus (HIV). Interestingly, these sensors demonstrated a high S/N and good performance in the assays of clinical samples; this was partly attributed to the combination of off-and-on models. In summary, we provide a novel type of protein sensor and a working model that potentially guides new sensor design with better performance.


Assuntos
Técnicas Biossensoriais , COVID-19 , Anticorpos Antivirais , COVID-19/diagnóstico , Humanos , Luciferases , SARS-CoV-2
12.
mBio ; 13(2): e0009922, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35266815

RESUMO

Recently, highly transmissible severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants B.1.617.1 (Kappa), B.1.617.2 (Delta), and B.1.618 with mutations within the spike proteins were identified in India. The spike protein of Kappa contains the four mutations E154K, L452R, E484Q, and P681R, and Delta contains L452R, T478K, and P681R, while B.1.618 spike harbors mutations Δ145-146 and E484K. However, it remains unknown whether these variants have alterations in their entry efficiency, host tropism, and sensitivity to neutralizing antibodies as well as entry inhibitors. In this study, we found that Kappa, Delta, or B.1.618 spike uses human angiotensin-converting enzyme 2 (ACE2) with no or slightly increased efficiency, while it gains a significantly increased binding affinity with mouse, marmoset, and koala ACE2 orthologs, which exhibit limited binding with wild-type (WT) spike. Furthermore, the P681R mutation leads to enhanced spike cleavage, which could facilitate viral entry. In addition, Kappa, Delta, and B.1.618 exhibit a reduced sensitivity to neutralization by convalescent-phase sera due to the mutation E484Q, T478K, Δ145-146, or E484K, but remain sensitive to entry inhibitors such as ACE2-Ig decoy receptor. Collectively, our study revealed that enhanced human and mouse ACE2 receptor engagement, increased spike cleavage, and reduced sensitivity to neutralization antibodies of Kappa, Delta and B.1.618 may contribute to the rapid spread of these variants. Furthermore, our results also highlight that ACE2-Ig could be developed as a broad-spectrum antiviral strategy against SARS-CoV-2 variants. IMPORTANCE SARS-CoV-2, the causative agent of pandemic COVID-19, is rapidly evolving to be more transmissible and to exhibit evasive immune properties, compromising neutralization by antibodies from vaccinated individuals or convalescent-phase sera. Recently, SARS-CoV-2 variants B.1.617.1 (Kappa), B.1.617.2 (Delta), and B.1.618 with mutations within the spike proteins were identified in India. In this study, we examined cell entry efficiencies of Kappa, Delta, and B.1.618. In addition, the variants, especially the Delta variant, exhibited expanded capabilities to use mouse, marmoset, and koala ACE2 for entry. Convalescent sera from patients infected with nonvariants showed reduced neutralization titers among the Kappa, Delta, and B.1.618 variants. Furthermore, the variants remain sensitive to ACE2-Ig decoy receptor. Our study thus could facilitate understanding how variants have increased transmissibility and evasion of established immunity and also could highlight the use of an ACE2 decoy receptor as a broad-spectrum antiviral strategy against SARS-CoV-2 variants.


Assuntos
COVID-19 , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/genética , Animais , Antivirais , COVID-19/terapia , Humanos , Evasão da Resposta Imune , Imunização Passiva , Camundongos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus , Soroterapia para COVID-19
13.
J Nanobiotechnology ; 20(1): 27, 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34991617

RESUMO

BACKGROUND: Currently, there are no curative drugs for hepatitis B virus (HBV). Complete elimination of HBV covalently closed circular DNA (cccDNA) is key to the complete cure of hepatitis B virus infection. The CRISPR/Cas9 system can directly destroy HBV cccDNA. However, a CRISPR/Cas9 delivery system with low immunogenicity and high efficiency has not yet been established. Moreover, effective implementation of precise remote spatiotemporal operations in CRISPR/Cas9 is a major limitation. RESULTS: In this work, we designed NIR-responsive biomimetic nanoparticles (UCNPs-Cas9@CM), which could effectively deliver Cas9 RNP to achieve effective genome editing for HBV therapy. HBsAg, HBeAg, HBV pgRNA and HBV DNA along with cccDNA in HBV-infected cells were found to be inhibited. These findings were confirmed in HBV-Tg mice, which did not exhibit significant cytotoxicity and minimal off-target DNA damage. CONCLUSIONS: The UCNPs-based biomimetic nanoplatforms achieved the inhibition of HBV replication via CRISPR therapy and it is a potential system for efficient treatment of human HBV diseases.


Assuntos
Materiais Biomiméticos , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Hepatite B/terapia , Nanopartículas , Animais , Materiais Biomiméticos/química , Materiais Biomiméticos/efeitos da radiação , Técnicas de Transferência de Genes , Vírus da Hepatite B , Raios Infravermelhos , Camundongos , Camundongos Transgênicos , Nanopartículas/química , Nanopartículas/efeitos da radiação
14.
Pediatr Pulmonol ; 57(1): 49-56, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34559474

RESUMO

OBJECTIVE: Few studies have explored the clinical features in children infected with SARS-CoV-2 and other common respiratory viruses, including respiratory syncytial virus (RSV), Influenza virus (IV), and adenovirus (ADV). Herein, we reported the clinical characteristics and cytokine profiling in children with COVID-19 or other acute respiratory tract infections (ARTI). METHODS: We enrolled 20 hospitalized children confirmed as COVID-19 positive, 58 patients with ARTI, and 20 age and sex-matched healthy children. The clinical information and blood test results were collected. A total of 27 cytokines and chemokines were measured and analyzed. RESULTS: The median age in the COVID-19 positive group was 14.5 years, which was higher than that of the ARTI groups. Around one-third of patients in the COVID-19 group experienced moderate fever, with a peak temperature of 38.27°C. None of the patients displayed wheezing or dyspnea. In addition, patients in the COVID-19 group had lower white blood cells, platelet counts as well as a neutrophil-lymphocyte ratio. Lower serum concentrations of 14 out of 27 cytokines were observed in the COVID-19 group than in healthy individuals. Seven cytokines (IL-1Ra, IL-1ß, IL-9, IL-10, TNF-α, MIP-1α, and VEGF) changed serum concentration in COVID-19 compared with other ARTI groups. CONCLUSION: Patients with COVID-19 were older and showed milder symptoms and a favorable prognosis than ARTI caused by RSV, IV, and ADV. There was a low grade or constrained innate immune reaction in children with mild COVID-19.


Assuntos
COVID-19 , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Infecções Respiratórias , Adolescente , China/epidemiologia , Humanos , Lactente , Infecções por Vírus Respiratório Sincicial/diagnóstico , Infecções Respiratórias/diagnóstico , SARS-CoV-2
15.
PLoS Pathog ; 17(11): e1010053, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34748603

RESUMO

COVID-19 patients transmitted SARS-CoV-2 to minks in the Netherlands in April 2020. Subsequently, the mink-associated virus (miSARS-CoV-2) spilled back over into humans. Genetic sequences of the miSARS-CoV-2 identified a new genetic variant known as "Cluster 5" that contained mutations in the spike protein. However, the functional properties of these "Cluster 5" mutations have not been well established. In this study, we found that the Y453F mutation located in the RBD domain of miSARS-CoV-2 is an adaptive mutation that enhances binding to mink ACE2 and other orthologs of Mustela species without compromising, and even enhancing, its ability to utilize human ACE2 as a receptor for entry. Structural analysis suggested that despite the similarity in the overall binding mode of SARS-CoV-2 RBD to human and mink ACE2, Y34 of mink ACE2 was better suited to interact with a Phe rather than a Tyr at position 453 of the viral RBD due to less steric clash and tighter hydrophobic-driven interaction. Additionally, the Y453F spike exhibited resistance to convalescent serum, posing a risk for vaccine development. Thus, our study suggests that since the initial transmission from humans, SARS-CoV-2 evolved to adapt to the mink host, leading to widespread circulation among minks while still retaining its ability to efficiently utilize human ACE2 for entry, thus allowing for transmission of the miSARS-CoV-2 back into humans. These findings underscore the importance of active surveillance of SARS-CoV-2 evolution in Mustela species and other susceptible hosts in order to prevent future outbreaks.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/epidemiologia , Adaptação ao Hospedeiro , Vison/imunologia , Mutação , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/genética , Adulto , Idoso , Enzima de Conversão de Angiotensina 2/genética , Animais , Sítios de Ligação , COVID-19/imunologia , COVID-19/terapia , COVID-19/transmissão , COVID-19/virologia , Feminino , Humanos , Imunização Passiva/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade , Vison/virologia , Simulação de Dinâmica Molecular , Países Baixos/epidemiologia , Ligação Proteica , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus , Adulto Jovem , Soroterapia para COVID-19
17.
Clin Sci (Lond) ; 135(12): 1505-1522, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34128977

RESUMO

Chronic hepatitis B virus (HBV) infection is a significant public health burden worldwide. HBV covalently closed circular DNA (cccDNA) organized as a minichromosome in nucleus is responsible for viral persistence and is the key obstacle for a cure of chronic hepatitis B (CHB). Recent studies suggest cccDNA transcription is epigenetically regulated by histone modifications, especially histone acetylation and methylation. In the present study, we identified transcriptionally active histone succinylation (H3K122succ) as a new histone modification on cccDNA minichromosome by using cccDNA ChIP-Seq approach. Silent mating type information regulation 2 homolog 7 (SIRT7), as an NAD+-dependent histone desuccinylase, could bind to cccDNA through interaction with HBV core protein where it catalyzed histone 3 lysine 122 (H3K122) desuccinylation. Moreover, SIRT7 acts cooperatively with histone methyltransferase, suppressor of variegation 3-9 homolog 1 (SUV39H1) and SET domain containing 2 (SETD2) to induce silencing of HBV transcription through modulation of chromatin structure. Our data improved the understanding of histone modifications of the cccDNA minichromosome, thus transcriptional silencing of cccDNA may represent a novel antiviral strategy for the prevention or treatment of HBV infection.


Assuntos
Catálise , DNA Circular/metabolismo , Histona Metiltransferases/genética , Histonas/metabolismo , Sirtuínas/metabolismo , DNA Viral/genética , Hepatite B/prevenção & controle , Hepatite B/terapia , Hepatite B/virologia , Vírus da Hepatite B/patogenicidade , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/prevenção & controle , Humanos , Sirtuínas/genética , Transcrição Gênica/genética , Replicação Viral/genética
18.
Signal Transduct Target Ther ; 6(1): 197, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006847

RESUMO

Our understanding of the protective immunity, particularly the long-term dynamics of neutralizing antibody (NAbs) response to SARS-CoV-2, is currently limited. We enrolled a cohort of 545 COVID-19 patients from Hubei, China, who were followed up up to 7 months, and determined the dynamics of NAbs to SARS-CoV-2 by using a surrogate virus neutralization test (sVNT). In our validation study, sVNT IC50 titers and the neutralization rate measured at a single dilution (1:20) were well correlated with FRNT titers (r = 0.85 and 0.84, respectively). The median time to seroconversion of NAbs was 5.5 days post onset of symptoms. The rate of positive sVNT was 52% in the first week, reached 100% in the third week, and remained above 97% till 6 months post onset. Quantitatively, NAbs peaked in the fourth week and only a quarter of patients had an estimated peak titer of >1000. NAbs declined with a half-time of 61 days (95% CI: 49-80 days) within the first two months, and the decay deaccelerated to a half-time of 104 days (95% CI: 86-130 days) afterward. The peak levels of NAbs were positively associated with severity of COVID-19 and age, while negatively associated with serum albumin levels. The observation that the low-moderate peak neutralizing activity and fast decay of NAbs in most naturally infected individuals called for caution in evaluating the feasibility of antibody-based therapy and vaccine durability. NAbs response positively correlated with disease severity, warning for the possibility of repeat infection in patients with mild COVID-19.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , SARS-CoV-2 , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , COVID-19/sangue , COVID-19/imunologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo , Índice de Gravidade de Doença , Fatores de Tempo
19.
Cell Discov ; 7(1): 18, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33767156

RESUMO

It is important to evaluate the durability of the protective immune response elicited by primary infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we systematically evaluated the SARS-CoV-2-specific memory B cell and T cell responses in healthy controls and individuals recovered from asymptomatic or symptomatic infection approximately 6 months prior. Comparatively low frequencies of memory B cells specific for the receptor-binding domain (RBD) of spike glycoprotein (S) persisted in the peripheral blood of individuals who recovered from infection (median 0.62%, interquartile range 0.48-0.69). The SARS-CoV-2 RBD-specific memory B cell response was detected in 2 of 13 individuals who recovered from asymptomatic infection and 10 of 20 individuals who recovered from symptomatic infection. T cell responses induced by S, membrane (M), and nucleocapsid (N) peptide libraries from SARS-CoV-2 were observed in individuals recovered from coronavirus disease 2019 (COVID-19), and cross-reactive T cell responses to SARS-CoV-2 were also detected in healthy controls.

20.
Nat Commun ; 12(1): 1618, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712622

RESUMO

Cytokine release syndrome (CRS) is a major cause of the multi-organ injury and fatal outcome induced by SARS-CoV-2 infection in severe COVID-19 patients. Metabolism can modulate the immune responses against infectious diseases, yet our understanding remains limited on how host metabolism correlates with inflammatory responses and affects cytokine release in COVID-19 patients. Here we perform both metabolomics and cytokine/chemokine profiling on serum samples from healthy controls, mild and severe COVID-19 patients, and delineate their global metabolic and immune response landscape. Correlation analyses show tight associations between metabolites and proinflammatory cytokines/chemokines, such as IL-6, M-CSF, IL-1α, IL-1ß, and imply a potential regulatory crosstalk between arginine, tryptophan, purine metabolism and hyperinflammation. Importantly, we also demonstrate that targeting metabolism markedly modulates the proinflammatory cytokines release by peripheral blood mononuclear cells isolated from SARS-CoV-2-infected rhesus macaques ex vivo, hinting that exploiting metabolic alterations may be a potential strategy for treating fatal CRS in COVID-19.


Assuntos
COVID-19/imunologia , COVID-19/metabolismo , Síndrome da Liberação de Citocina/imunologia , Síndrome da Liberação de Citocina/metabolismo , Citocinas/sangue , Metaboloma , SARS-CoV-2 , Animais , COVID-19/terapia , Estudos de Casos e Controles , Estudos de Coortes , Síndrome da Liberação de Citocina/terapia , Feminino , Seguimentos , Humanos , Técnicas In Vitro , Mediadores da Inflamação/sangue , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Estudos Longitudinais , Macaca mulatta , Masculino , Redes e Vias Metabólicas , Pandemias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA