Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Small ; : e2402808, 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38764281

RESUMO

The metal indium sulfides have attracted extensive research interest in photocatalysis due to regulable atomic configuration and excellent optoelectronic properties. However, the synthesis of metal indium sulfide atomic layers is still challenging since intrinsic non-van-der-Waals layered structures of some components. Here, a surfactant self-assembly growth mechanism is proposed to controllably synthesize metal indium sulfide atomic layers. Eleven types of atomic layers with tunable compositions, thickness, and defect concentrations are successfully achieved namely In2S3, MgIn2S4, CaIn2S4, MnIn2S4, FeIn2S4, ZnIn2S4, Zn2In2S5, Zn4In16S33, CuInS2, CuIn5S8, and CdIn2S4. The typical CaIn2S4 shows a defect-dependence activity for CO2 photoreduction. The designed S vacancies in CaIn2S4 can serve as catalytic centers to activate CO2 molecules via localized electrons for π-back-donation. The engineered S vacancies tune the non-covalent interaction with CO2 and intermediates, manages to tune the free energy, and lower the reaction energy barrier. As a result, the defect-rich CaIn2S4 displays 2.82× improved reduction rate than defect-poor CaIn2S4. Meantime, other components also display promising photocatalytic performance, such as Zn2In2S5 with a H2O2 photosynthesis rate of 292 µmol g-1 h-1 and CuInS2 with N2-NH4 + conversion rate of 54 µmol g-1 h-1. This work paves the way for the multidisciplinary exploration of metal indium sulfide atomic layers with unique photocatalysis properties.

2.
Nat Commun ; 15(1): 2562, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519485

RESUMO

Hydrogen spillover widely occurs in a variety of hydrogen-involved chemical and physical processes. Recently, metal-organic frameworks have been extensively explored for their integration with noble metals toward various hydrogen-related applications, however, the hydrogen spillover in metal/MOF composite structures remains largely elusive given the challenges of collecting direct evidence due to system complexity. Here we show an elaborate strategy of modular signal amplification to decouple the behavior of hydrogen spillover in each functional regime, enabling spectroscopic visualization for interfacial dynamic processes. Remarkably, we successfully depict a full picture for dynamic replenishment of surface hydrogen atoms under interfacial hydrogen spillover by quick-scanning extended X-ray absorption fine structure, in situ surface-enhanced Raman spectroscopy and ab initio molecular dynamics calculation. With interfacial hydrogen spillover, Pd/ZIF-8 catalyst shows unique alkyne semihydrogenation activity and selectivity for alkynes molecules. The methodology demonstrated in this study also provides a basis for further exploration of interfacial species migration.

3.
J Am Chem Soc ; 146(13): 9465-9475, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38507822

RESUMO

Dry reforming of methane (DRM) is a promising technique for converting greenhouse gases (namely, CH4 and CO2) into syngas. However, traditional thermocatalytic processes require high temperatures and suffer from low selectivity and coke-induced instability. Here, we report high-entropy alloys loaded on SrTiO3 as highly efficient and coke-resistant catalysts for light-driven DRM without a secondary source of heating. This process involves carbon exchange between reactants (i.e., CO2 and CH4) and oxygen exchange between CO2 and the lattice oxygen of supports, during which CO and H2 are gradually produced and released. Such a mechanism deeply suppresses the undesired side reactions such as reverse water-gas shift reaction and methane deep dissociation. Impressively, the optimized CoNiRuRhPd/SrTiO3 catalyst achieves ultrahigh activity (15.6/16.0 mol gmetal-1 h-1 for H2/CO production), long-term stability (∼150 h), and remarkable selectivity (∼0.96). This work opens a new avenue for future energy-efficient industrial applications.

4.
Adv Mater ; : e2401914, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436110

RESUMO

The role of vacancy associates in photocatalytic CO2 reduction is an open question. Herein, the Nb─O vacancy associates (VNb─O ) are engineered into niobic acid (NA) atomic layers to tailor the CO2 photoreduction performance. The intrinsic charge compensation from O to Nb around Nb─O vacancy associates can manipulate the active electronic states, leading to the asymmetric electron redistribution. These local symmetry breaking sites show a charge density gradient, forming a localized polarization field to polarize nonpolar CO2 molecules and tune the noncovalent interaction of reaction intermediates. This unique configuration contributes to the 9.3 times increased activity for photocatalytic CO2 reduction. Meantime, this VNb─O NA also shows excellent photocatalytic activity for NO3 - -NH4 + synthesis, with NH4 + formation rate up to 3442 µmol g-1 h-1 . This work supplies fresh insights into the vacancy associate design for electron redistribution and noncovalent interaction tuning in photocatalysis.

5.
Angew Chem Int Ed Engl ; 63(13): e202317628, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38305482

RESUMO

The production of formic acid via electrochemical CO2 reduction may serve as a key link for the carbon cycle in the formic acid economy, yet its practical feasibility is largely limited by the quantity and concentration of the product. Here we demonstrate continuous electrochemical CO2 reduction for formic acid production at 2 M at an industrial-level current densities (i.e., 200 mA cm-2 ) for 300 h on membrane electrode assembly using scalable lattice-distorted bismuth catalysts. The optimized catalysts also enable a Faradaic efficiency for formate of 94.2 % and a highest partial formate current density of 1.16 A cm-2 , reaching a production rate of 21.7 mmol cm-2 h-1 . To assess the practicality of this system, we perform a comprehensive techno-economic analysis and life cycle assessment, showing that our approach can potentially substitute conventional methyl formate hydrolysis for industrial formic acid production. Furthermore, the resultant formic acid serves as direct fuel for air-breathing formic acid fuel cells, boasting a power density of 55 mW cm-2 and an exceptional thermal efficiency of 20.1 %.

6.
Nat Commun ; 15(1): 1273, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341405

RESUMO

The meticulous design of active sites and light absorbers holds the key to the development of high-performance photothermal catalysts for CO2 hydrogenation. Here, we report a nonmetallic plasmonic catalyst of Mo2N/MoO2-x nanosheets by integrating a localized surface plasmon resonance effect with two distinct types of active sites for CO2 hydrogenation. Leveraging the synergism of dual active sites, H2 and CO2 molecules can be simultaneously adsorbed and activated on N atom and O vacancy, respectively. Meanwhile, the plasmonic effect of this noble-metal-free catalyst signifies its promising ability to convert photon energy into localized heat. Consequently, Mo2N/MoO2-x nanosheets exhibit remarkable photothermal catalytic performance in reverse water-gas shift reaction. Under continuous full-spectrum light irradiation (3 W·cm-2) for a duration of 168 h, the nanosheets achieve a CO yield rate of 355 mmol·gcat-1·h-1 in a flow reactor with a selectivity exceeding 99%. This work offers valuable insights into the precise design of noble-metal-free active sites and the development of plasmonic catalysts for reducing carbon footprints.

7.
Natl Sci Rev ; 11(2): nwad275, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38226176

RESUMO

Solar-driven CO2 conversion into hydrocarbon fuels is a sustainable approach to synchronously alleviating the energy crisis and achieving net CO2 emissions. However, the dependence of the conversion process on solar illumination hinders its practical application due to the intermittent availability of sunlight at night and on cloudy or rainy days. Here, we report a model material of Pt-loaded hexagonal tungsten trioxide (Pt/h-WO3) for decoupling light and dark reaction processes, demonstrating the sustainable CO2 conversion under dark conditions for the first time. In such a material system, hydrogen atoms can be produced by photocatalytic water splitting under solar illumination, stored together with electrons in the h-WO3 through the transition of W6+ to W5+ and spontaneously released to trigger catalytic CO2 reduction under dark conditions. Furthermore, we demonstrate using natural light that CH4 production can persist at night and on rainy days, proving the accomplishment of all-weather CO2 conversion via a sustainable way.

8.
Nanoscale ; 16(3): 1038-1057, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38126462

RESUMO

Under the background of carbon neutrality, the direct conversion of greenhouse CO2 to high value added fuels and chemicals is becoming an important and promising technology. Among them, the generation of liquid C1 products (formic acid and methanol) has made great progress; nevertheless, it encounters the problem of how to use it efficiently to solve the overcapacity issue. In this review, we suggest that the catalytic transfer hydrogenation using formic acid and methanol as the hydrogen sources is a critical and potential route for the substitution for the fossil fuel-derived H2 to generate essential bulk and fine chemicals. We mainly focus on summarizing the recent progress of heterogeneous catalysts in such reactions, including thermal- and photo-catalytic processes. Finally, we also propose some challenges and opportunities for this development.

9.
Angew Chem Int Ed Engl ; 63(9): e202317852, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38141033

RESUMO

One-unit-cell, single-crystal, hexagonal CuInP2 S6 atomically thin sheets of≈0.81 nm in thickness was successfully synthesized for photocatalytic reduction of CO2 . Exciting ethene (C2 H4 ) as the main product was dominantly generated with the yield-based selectivity reaching ≈56.4 %, and the electron-based selectivity as high as ≈74.6 %. The tandem synergistic effect of charge-enriched Cu-In dual sites confined on the lateral edge of the CuInP2 S6 monolayer (ML) is mainly responsible for efficient conversion and high selectivity of the C2 H4 product as the basal surface site of the ML, exposing S atoms, can not derive the CO2 photoreduction due to the high energy barrier for the proton-coupled electron transfer of CO2 into *COOH. The marginal In site of the ML preeminently targets CO2 conversion to *CO under light illumination, and the *CO then migrates to the neighbor Cu sites for the subsequent C-C coupling reaction into C2 H4 with thermodynamic and kinetic feasibility. Moreover, ultrathin structure of the ML also allows to shorten the transfer distance of charge carriers from the interior onto the surface, thus inhibiting electron-hole recombination and enabling more electrons to survive and accumulate on the exposed active sites for CO2 reduction.

10.
J Am Chem Soc ; 146(1): 970-978, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38155551

RESUMO

Light-driven hydrogenation of nitro compounds to functionalized amines is of great importance yet a challenge for practical applications, which calls for the development of high-performance, nonprecious photocatalysts and efficient catalytic systems. Herein, we report a high-efficiency Fe3O4@TiO2 photocatalyst via a sol-gel and subsequent pyrolysis strategy, which exhibits desirable photothermal hydrogenation performance of nitro compounds to functionalized amines with the excellent selectivity of >90% exceeding those of the state-of-the-art heterogeneous photocatalysts. Our experimental results and theoretical calculations for the first time reveal that Fe3O4 is the major active phase, and the strong metal-support interaction between Fe3O4 and reducible TiO2 further leads to performance improvement, taking advantage of the enhanced photothermal effect and the improved adsorption for the reactant and hydrazine hydrate. Notably, a variety of halonitrobenzenes and pharmaceutical intermediates can be completely converted to functionalized amines with high selectivities, even in gram-scale reactions. This work provides a new insight into the rational design of nonprecious photo/thermo-catalysts for other catalytic reactions.

11.
Nanoscale ; 16(1): 171-179, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38086688

RESUMO

Electrocatalytic CO2-to-CH4 conversion provides a promising means of addressing current carbon resource recycling and intermittent energy storage. Cu-based single-atom catalysts have attracted extensive attention owing to their high intrinsic activity toward CH4 production; however, they suffer from uncontrollable metal loading and aggregation during the conventional pyrolysis process of carbon-based substrates. Herein, we developed a pyrolysis-free method to prepare a single-atom Cu catalyst anchored on a formamide polymer substrate with a high loading amount and well atomic dispersion through a mild polycondensation reaction. Owing to the isolation of copper active sites, efficient CO2-to-CH4 conversion is achieved over the single-atom Cu catalyst, along with the significant suppression of C-C coupling. As a result, the optimal single-atom catalyst with 5.87 wt% of Cu offers high CH4 faradaic efficiencies (FEs) of over 70% in a wide current density range from 100 to 600 mA cm-2 in the flow cell, together with a maximum CH4 partial current density of 415.8 mA cm-2. Moreover, the CH4 FE can reach 74.2% under optimized conditions in a membrane electrode assembly electrolyzer. This work provides new insights into the subtle design of highly efficient electrocatalyst for CO2 reduction.

12.
Nat Commun ; 14(1): 7935, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040753

RESUMO

Upgrading ethanol to long-chain alcohols (LAS, C6+OH) offers an attractive and sustainable approach to carbon neutrality. Yet it remains a grand challenge to achieve efficient carbon chain propagation, particularly with noble metal-free catalysts in aqueous phase, toward LAS production. Here we report an unconventional but effective strategy for designing highly efficient catalysts for ethanol upgrading to LAS, in which Ni catalytic sites are controllably exposed on surface through sulfur modification. The optimal catalyst exhibits the performance well exceeding previous reports, achieving ultrahigh LAS selectivity (15.2% C6OH and 59.0% C8+OH) at nearly complete ethanol conversion (99.1%). Our in situ characterizations, together with theoretical simulation, reveal that the selectively exposed Ni sites which offer strong adsorption for aldehydes but are inert for side reactions can effectively stabilize and enrich aldehyde intermediates, dramatically improving direct-growth probability toward LAS production. This work opens a new paradigm for designing high-performance non-noble metal catalysts for upgrading aqueous EtOH to LAS.

13.
Nat Commun ; 14(1): 6666, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37863924

RESUMO

Highly effective and selective noble metal-free catalysts attract significant attention. Here, a single-atom iron catalyst is fabricated by saturated adsorption of trace iron onto zeolitic imidazolate framework-8 (ZIF-8) followed by pyrolysis. Its performance toward catalytic transfer hydrogenation of furfural is comparable to state-of-the-art catalysts and up to four orders higher than other Fe catalysts. Isotopic labeling experiments demonstrate an intermolecular hydride transfer mechanism. First principles simulations, spectroscopic calculations and experiments, and kinetic correlations reveal that the synthesis creates pyrrolic Fe(II)-plN3 as the active center whose flexibility manifested by being pulled out of the plane, enabled by defects, is crucial for collocating the reagents and allowing the chemistry to proceed. The catalyst catalyzes chemoselectively several substrates and possesses a unique trait whereby the chemistry is hindered for more acidic substrates than the hydrogen donors. This work paves the way toward noble-metal free single-atom catalysts for important chemical reactions.

14.
Adv Sci (Weinh) ; 10(28): e2303448, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37544890

RESUMO

Piezo-assisted photocatalysis (namely, piezo-photocatalysis), which utilizes mechanical energy to modulate spatial and energy distribution of photogenerated charge carriers, presents a promising strategy for molecule activation and reactive oxygen species (ROS) generation toward applications such as environmental remediation. However, similarly to photocatalysis, piezo-photocatalysis also suffers from inferior charge separation and utilization efficiency. Herein, a Z-scheme heterojunction composed of single Ag atoms-anchored polymeric carbon nitride (Ag-PCN) and SnO2- x is developed for efficient charge carrier transfer/separation both within the catalyst and between the catalyst and surface oxygen molecules (O2 ). As revealed by charge dynamics analysis and theoretical simulations, the synergy between the single Ag atoms and the Z-scheme heterojunction initiates a cascade electron transfer from SnO2- x to Ag-PCN and then to O2 adsorbed on Ag. With ultrasound irradiation, the polarization field generated within the piezoelectric hybrid further accelerates charge transfer and regulates the O2 activation pathway. As a result, the Ag-PCN/SnO2- x catalyst efficiently activates O2 into ·O2 - , ·OH, and H2 O2 under co-excitation of visible light and ultrasound, which are consequently utilized to trigger aerobic degradation of refractory antibiotic pollutants. This work provides a promising strategy to maneuver charge transfer dynamics for efficient piezo-photocatalysis by integrating single-atom catalysts (SACs) with Z-scheme heterojunction.

15.
Adv Mater ; 35(42): e2302537, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37471253

RESUMO

Photothermal CO2 hydrogenation to high-value-added chemicals and fuels is an appealing approach to alleviate energy and environmental concerns. However, it still relies on the development of earth-abundant, efficient, and durable catalysts. Here, the design of N-doped carbon-coated Co nanoparticles (NPs), as a photothermal catalyst, synthesized through a two-step pyrolysis of Co-based ZIF-67 precursor, is reported. Consequently, the catalyst exhibits remarkable activity and stability for photothermal CO2 hydrogenation to CO with a 0.75 mol gcat -1 h-1 CO production rate under the full spectrum of light illumination. The high activity and durability of these Co NPs are mainly attributed to the synergy of the attuned size of Co NPs, the thickness of carbon layers, and the N doping species. Impressively, the experimental characterizations and theoretical simulations show that such a simple N-doped carbon coating strategy can effectively facilitate the desorption of generated CO and activation of reactants due to the strong photothermal effect. This work provides a simple and efficient route for the preparation of highly active and durable nonprecious metal catalysts for promising photothermal catalytic reactions.

16.
Nat Commun ; 14(1): 3047, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37236986

RESUMO

Oxidative carbonylation of methane is an appealing approach to the synthesis of acetic acid but is limited by the demand for additional reagents. Here, we report a direct synthesis of CH3COOH solely from CH4 via photochemical conversion without additional reagents. This is made possible through the construction of the PdO/Pd-WO3 heterointerface nanocomposite containing active sites for CH4 activation and C-C coupling. In situ characterizations reveal that CH4 is dissociated into methyl groups on Pd sites while oxygen from PdO is the responsible for carbonyl formation. The cascade reaction between the methyl and carbonyl groups generates an acetyl precursor which is subsequently converted to CH3COOH. Remarkably, a production rate of 1.5 mmol gPd-1 h-1 and selectivity of 91.6% toward CH3COOH is achieved in a photochemical flow reactor. This work provides insights into intermediate control via material design, and opens an avenue to conversion of CH4 to oxygenates.

17.
Mar Pollut Bull ; 191: 114962, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37146549

RESUMO

The mitigation of eutrophication in the Pearl River Estuary (PRE) has encountered numerous challenges in regards to source control. Herein, the isotope mixing model (SIAR) was used to quantify the primary nitrate sources in the PRE. The results showed that the nitrate levels were significantly higher in the high-flow season than in the low-flow season. Meanwhile, we found the most important nitrate sources were manure and sewage during the high-flow season, with a contribution ratio of 47 % in the low salt area (LSA) and 29 % in the high salt area (HSA). During the low-flow season, the primary nitrate sources were identified as reduced nitrogen fertilizer in the LSA and manure and sewage in the HSA, which accounted for 52 % and 44 %, respectively. Furthermore, we also suggest that a feasible measure might be to control the pollution caused in the PRE by manure and sewage as well as reduced nitrogen fertilizer.


Assuntos
Nitratos , Poluentes Químicos da Água , Nitratos/análise , Isótopos de Nitrogênio/análise , Esgotos , Rios , Fertilizantes/análise , Esterco/análise , Estuários , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Nitrogênio/análise , China
18.
Nat Commun ; 14(1): 2643, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37156784

RESUMO

Photoelectrochemical device is a versatile platform for achieving various chemical transformations with solar energy. However, a grand challenge, originating from mass and electron transfer of triphase-reagents/products in gas phase, water/electrolyte/products in liquid phase and catalyst/photoelectrode in solid phase, largely limits its practical application. Here, we report the simulation-guided development of hierarchical triphase diffusion photoelectrodes, to improve mass transfer and ensure electron transfer for photoelectrochemical gas/liquid flow conversion. Semiconductor nanocrystals are controllably integrated within electrospun nanofiber-derived mat, overcoming inherent brittleness of semiconductors. The mechanically strong skeleton of free-standing mat, together with satisfactory photon absorption, electrical conductivity and hierarchical pores, enables the design of triphase diffusion photoelectrodes. Such a design allows photoelectrochemical gas/liquid conversion to be performed continuously in a flow cell. As a proof of concept, 16.6- and 4.0-fold enhancements are achieved for the production rate and product selectivity of methane conversion, respectively, with remarkable durability.

19.
Angew Chem Int Ed Engl ; 62(19): e202217369, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36916416

RESUMO

Electrochemical CO2 reduction reaction (ECO2 RR) with controlled product selectivity is realized on Ag-Cu bimetallic surface alloys, with high selectivity towards C2 hydrocarbons/alcohols (≈60 % faradaic efficiency, FE), C1 hydrocarbons/alcohols (≈41 % FE) and CO (≈74 % FE) achieved by tuning surface compositions and applied potentials. In situ spectral investigations and theoretical calculations reveal that surface-composition-dependent d-band center could tune *CO binding strengths, regulating the *CO subsequent reaction pathways and then the product selectivity. Further adjusting the applied potentials will alter the energy of participated electrons, which leads to controlled ECO2 RR selectivity towards desired products. A predominant region map, with an indicator proposed to evaluate the thermodynamic predominance of the *CO subsequent reactions, is then provided as a reliable theoretical guidance for the controllable ECO2 RR product selectivity over bimetallic alloys.

20.
Nat Commun ; 14(1): 1410, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36918590

RESUMO

Methyl halides are versatile platform molecules, which have been widely adopted as precursors for producing value-added chemicals and fuels. Despite their high importance, the green and economical synthesis of the methyl halides remains challenging. Here we demonstrate sustainable and efficient photocatalytic methane halogenation for methyl halide production over copper-doped titania using alkali halides as a widely available and noncorrosive halogenation agent. This approach affords a methyl halide production rate of up to 0.61 mmol h-1 m-2 for chloromethane or 1.08 mmol h-1 m-2 for bromomethane with a stability of 28 h, which are further proven transformable to methanol and pharmaceutical intermediates. Furthermore, we demonstrate that such a reaction can also operate solely using seawater and methane as resources, showing its high practicability as general technology for offshore methane exploitation. This work opens an avenue for the sustainable utilization of methane from various resources and toward designated applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA