Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Front Microbiol ; 15: 1301258, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38348184

RESUMO

Livestock on the Qinghai-Tibetan Plateau is of great importance for the livelihood of the local inhabitants and the ecosystem of the plateau. The natural, harsh environment has shaped the adaptations of local livestock while providing them with requisite eco-services. Over time, unique genes and metabolic mechanisms (nitrogen and energy) have evolved which enabled the yaks to adapt morphologically and physiologically to the Qinghai-Tibetan Plateau. The rumen microbiota has also co-evolved with the host and contributed to the host's adaptation to the environment. Understanding the complex linkages between the rumen microbiota, the host, and the environment is essential to optimizing the rumen function to meet the growing demands for animal products while minimizing the environmental impact of ruminant production. However, little is known about the mechanisms of host-rumen microbiome-environment linkages and how they ultimately benefit the animal in adapting to the environment. In this review, we pieced together the yak's adaptation to the Qinghai-Tibetan Plateau ecosystem by summarizing the natural selection and nutritional features of yaks and integrating the key aspects of its rumen microbiome with the host metabolic efficiency and homeostasis. We found that this homeostasis results in higher feed digestibility, higher rumen microbial protein production, higher short-chain fatty acid (SCFA) concentrations, and lower methane emissions in yaks when compared with other low-altitude ruminants. The rumen microbiome forms a multi-synergistic relationship among the rumen microbiota services, their communities, genes, and enzymes. The rumen microbial proteins and SCFAs act as precursors that directly impact the milk composition or adipose accumulation, improving the milk or meat quality, resulting in a higher protein and fat content in yak milk and a higher percentage of protein and abundant fatty acids in yak meat when compared to dairy cow or cattle. The hierarchical interactions between the climate, forage, rumen microorganisms, and host genes have reshaped the animal's survival and performance. In this review, an integrating and interactive understanding of the host-rumen microbiome environment was established. The understanding of these concepts is valuable for agriculture and our environment. It also contributes to a better understanding of microbial ecology and evolution in anaerobic ecosystems and the host-environment linkages to improve animal production.

2.
Appl Microbiol Biotechnol ; 107(15): 4931-4945, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37341753

RESUMO

Microbiota from mothers is an essential source of microbes in early-life rumen microbiota, but the contribution of microbiota from different maternal sites to the rumen microbiota establishment in neonates needs more data. To fill this gap, we collected samples from the mouth, teat skin, and rumen of lactating yaks and from the rumen of sucking calves concomitantly on seven occasions between days 7 and 180 after birth under grazing conditions. We observed that the eukaryotic communities clustered based on sample sites, except for the protozoal community in the teat skin, with negative correlations between fungal and protozoal diversities in the rumen of calves. Furthermore, fungi in the dam's mouth, which is the greatest source of the calf's rumen fungi, accounted for only 0.1%, and the contribution of the dam's rumen to the calf's rumen fungi decreased with age and even disappeared after day 60. In contrast, the average contribution of the dam's rumen protozoa to the calf's rumen protozoa was 3.7%, and the contributions from the dam's teat skin (from 0.7 to 2.7%) and mouth (from 0.4 to 3.3%) increased with age. Thus, the divergence in dam-to-calf transmissibility between fungi and protozoa indicates that the foundation of these eukaryotic communities is shaped by different rules. This study provides the first measurements of the maternal contribution to the fungal and protozoal establishment in the rumen of sucking and grazing yak calves in early life, which could be beneficial for future microbiota manipulation in neonatal ruminants. KEY POINTS: • Dam to calf transfer of rumen eukaryotes occurs from multiple body sites. • A minor proportion of rumen fungi in calves originated from maternal sites. • The inter-generation transmission between rumen fungi and protozoa differs.


Assuntos
Células Eucarióticas , Lactação , Feminino , Bovinos , Animais , Boca , Rúmen/microbiologia , Fungos
3.
PNAS Nexus ; 2(3): pgac314, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36992818

RESUMO

The Tibetan grasslands store 2.5% of the Earth's soil organic carbon. Unsound management practices and climate change have resulted in widespread grassland degradation, providing open habitats for rodent activities. Rodent bioturbation loosens topsoil, reduces productivity, changes soil nutrient conditions, and consequently influences the soil organic carbon stocks of the Tibetan grasslands. However, these effects have not been quantified. Here, using meta-analysis and upscaling approaches, we found that rodent bioturbation impacts on the Tibetan grassland soil organic carbon contents were depth-dependent, with significant (P < 0.001) decreasing of 24.4% in the topsoil (0 to 10 cm) but significant (P < 0.05) increasing of 35.9% in the deeper soil layer (40 to 50 cm), and nonsignificant changes in other soil layers. The depth-dependent responses in soil organic carbon content were closely associated with rodent tunnel burrowing, foraging, excrement deposition, and mixing of the upper and deeper soil layers. Rodent bioturbation had shown nonsignificant impacts on soil bulk density, independent of soil layer. Tibetan grasslands totally lose -35.2 Tg C yr-1 (95% CI: -48.5 to -21.1 Tg C yr-1) and -32.9 Tg C yr-1 (-54.2 to -8.6 Tg C yr-1) due to rodent bioturbation in the 0 to 10 or 0 to 30 cm soil layer, while no significant net loss was found over the 0 to 90 cm layer. Our findings highlight the importance of considering depth-dependent factors to robustly quantify the net changes in the terrestrial soil organic carbon stocks resulting from disturbances such as rodent bioturbation.

4.
Anim Nutr ; 12: 77-86, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36514373

RESUMO

Yaks (Bos grunniens), indigenous to the harsh Qinghai-Tibetan Plateau, are well adapted to the severe conditions, and graze natural pasture without supplements all year round. Qaidam cattle (Bos taurus), introduced to the Qinghai-Tibetan Plateau 1,700 years ago, are raised at a lower altitude than yaks, provided with shelter at night and offered supplements in winter. Based on their different backgrounds, we hypothesized that yaks have lower energy requirements for maintenance than cattle. To test this hypothesis, we measured average daily gain (ADG), apparent digestibilities, energy balance, rumen fermentation parameters, and serum metabolites in growing yaks and cattle offered diets differing in metabolizable energy (ME) levels (6.62, 8.02, 9.42 and 10.80 MJ/kg), but with the same crude protein concentration. Six castrated yaks (155 ± 5.8 kg) and 6 castrated Qaidam cattle (154 ± 8.0 kg), all 2.5 years old, were used in 2 concurrent 4 × 4 Latin square designs. Neutral and acid detergent fiber digestibilities were greater (P < 0.05) in yaks than in cattle, and decreased linearly (P < 0.05) with increasing dietary energy level; whereas, digestibilities of dry matter, organic matter, crude protein and ether extract increased (P < 0.05) linearly with increasing energy level. The ADG was greater (P < 0.001) in yaks than in cattle, and increased (P < 0.05) linearly with increasing energy levels. From the regressions of ADG on ME intake, the estimated ME requirement for maintenance was lower (P < 0.05) in yaks than in cattle (0.43 vs. 0.57 MJ/kg BW0.75). The ratios of digestible energy (DE):gross energy and ME:DE were higher (P < 0.05) in yaks than in cattle, and increased (P < 0.05) linearly with increasing dietary energy level. Ruminal pH decreased (P < 0.05), whereas concentrations of total volatile fatty acids (VFAs) and ammonia increased (P < 0.01) with increasing dietary energy level, and all were greater (P < 0.05) in yaks than in cattle. Concentrations of ruminal acetate and iso-VFAs were greater (P < 0.05), whereas propionate was lower (P < 0.05) in yaks than in cattle; acetate decreased (P < 0.001), whereas butyrate and propionate increased (P < 0.001) linearly with increasing dietary energy level. Serum concentrations of ß-hydroxybutyrate were lower (interaction, P < 0.001) in yaks than in cattle fed diets of 9.42 and 10.80 MJ/kg, whereas non-esterified fatty acids were greater (interaction, P < 0.01) in yaks than in cattle fed diets of 6.62 and 8.02 MJ/kg. Concentrations of serum leptin and growth hormone were greater in yaks than in cattle and serum insulin and growth hormone increased (P < 0.01) linearly with increasing dietary energy level. Our hypothesis that yaks have lower energy requirements for maintenance than cattle was supported. This lower requirement confers an advantage to yaks over Qaidam cattle in consuming low energy diets during the long winter on the Qinghai-Tibetan Plateau.

5.
Sci Total Environ ; 858(Pt 1): 159758, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36349635

RESUMO

Grazing exclusion (GE) is a management option used widely to restore degraded grassland and improve grassland ecosystems. However, the impacts of GE on soil properties and greenhouse gas emissions of alpine shrub meadow are still unclear, especially long-term GE of more than ten years. To fill part of this gap, we examined the effects of long-term GE of alpine shrub meadow on soil nutrients, soil properties, greenhouse gas emissions (CO2 and CH4) and soil organic carbon (SOC) turnover. When compared to grazed grassland (GG), long-term GE resulted in: 1) greater SOC, nitrogen (N), and phosphorous (P) content, especially in the 20-30 cm soil layer; 2) greater soil C:N, C:P and N:P ratios in the 20-30 cm depth; 3) greater soil CO2, but lesser CH4 emission during the growing season; and 4) much faster SOC turnover time (0-30 cm). GE of more than ten years can increase grassland C reserves and improve the C sequestration capacity of the ecosystem. Results from this study can have important implications in developing future grassland management policies on soil nutrient balances, restoration of degraded grassland and controlling shrub expansion.


Assuntos
Gases de Efeito Estufa , Solo , Carbono/análise , Pradaria , Ecossistema , Dióxido de Carbono/análise
6.
Anim Biosci ; 36(3): 461-470, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36397700

RESUMO

OBJECTIVE: Sweet sorghum is an important forage crop for ruminants, especially in low rainfall areas. Grapeseeds are an abundant by-product of wine-making and contain bioactive substances that can improve the antioxidant capacity of meat. We examined the effect of sweet sorghum forage with supplementary grapeseeds on carcass and meat quality in lambs. METHODS: Twenty-eight Small-tailed Han lambs (body weight = 19.1±1.20 kg), aged 3 to 4 months, were penned, and fed individually. The lambs were divided into four groups (n = 7 each) and were offered one of four diets: i) sweet sorghum silage; ii) sweet sorghum silage + grapeseeds; iii) sweet sorghum hay; and iv) sweet sorghum hay + grapeseeds. The grapeseeds were added to the concentrate at 6% DM and the diets were fed for 100 d. RESULTS: Sweet sorghum silage tended (p = 0.068) to increase hot carcass weight, while grapeseeds tended (p = 0.081) to decrease dressing percentage without affecting other carcass parameters. Lambs consuming supplementary grapeseeds increased (p<0.05) meat redness and tended to decrease (p = 0.075) concentration of methionine in meat. Lambs consuming sweet sorghum silage increased (p<0.001) water content of the meat and had a lower (p<0.05) concentration of n-6 polyunsaturated fatty acids (PUFA) and n-6:n-3 PUFA ratio than lambs consuming sweet sorghum hay. Saturated fatty acids content in meat was lowest (p<0.05) in lambs consuming sweet sorghum silage with grapeseeds. Lambs with supplementary grapeseeds tended (p<0.10) to increase eicosapentaenoic acid and docosahexaenoic acid and have a lower thrombogenic index than lambs not consuming grapeseeds. CONCLUSION: It was concluded that sweet sorghum with supplementary grapeseeds fed to lambs; i) improved the color of the meat to be more appetizing to the consumer; ii) tended to improve the fatty acids composition of the meat; and iii) lowered thrombogenic index of the meat.

7.
Water Res ; 226: 119310, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36369683

RESUMO

Heavy metal(loid)s (HMs) have been consistently entering the food chain, imposing great harm on environment and public health. However, previous studies on the spatial dynamics and transport mechanism of HMs have been profoundly limited by the field sampling issues, such as the uneven observations of individual carriers and their spatial mismatch, especially over large-scale catchments with complex environment. In this study, a novel methodological framework for mapping HMs at catchment scale was proposed and applied, combining a species distribution model (SDM) with physical environment and human variables. Based on the field observations, we ecologicalized HMs in different carriers as different species. This enabled the proposed framework to model the 'enrichment area' of individual HMs in the geographic space (termed as the HM 'habitat') and identify their 'hotspots' (peak value points) within the catchment. Results showed the output maps of HM habitats from secondary carriers (soil, sediment, and wet deposition) well agreed with the influence of industry contaminants, hydraulic sorting, and precipitation washout process respectively, indicating the potential of SDM in modeling the spatial distributions of the HM. The derived maps of HMs from secondary carriers, along with the human and environmental variables were then input as explanatory variables in SDM to predict the spatial patterns of the final HM accumulation in river water, which was observed to have largely improved the prediction quality. These results confirmed the value of our framework to leverage SDMs from ecology perspective to study HM contamination transport at catchment scale, offering new insights not only to map the spatial HM habitats but also help locate the HM transport chains among different carriers.


Assuntos
Metais Pesados , Poluentes do Solo , Humanos , Poluentes do Solo/análise , Monitoramento Ambiental/métodos , Medição de Risco , Metais Pesados/análise , Solo , China
8.
Front Microbiol ; 13: 1006285, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212853

RESUMO

Yak is the only ruminant on the Qinghai-Tibetan Plateau that grazes year-round. Although previous research has shown that yak rumen microbiota fluctuates in robust patterns with seasonal foraging, it remains unclear whether these dynamic shifts are driven by changes in environment or nutrient availability. The study examines the response of yak rumen microbiota (bacteria, fungi, and archaea) to simulated seasonal diets, excluding the contribution of environmental factors. A total of 18 adult male yaks were randomly divided into three groups, including a nutrition stress group (NSG, simulating winter pasture), a grazing simulation group (GSG, simulating warm season pasture), and a supplementation group (SG, simulating winter pasture supplemented with feed concentrates). Volatile fatty acids (VFAs) profiling showed that ruminal acetate, propionate and total VFA contents were significantly higher (p < 0.05) in GSG rumen. Metagenomic analysis showed that Bacteroidetes (53.9%) and Firmicutes (37.1%) were the dominant bacterial phyla in yak rumen across dietary treatments. In GSG samples, Actinobacteriota, Succinivibrionaceae_UCG-002, and Ruminococcus albus were the most abundant, while Bacteroides was significantly more abundant in NSG samples (p < 0.05) than that in GSG. The known fiber-degrading fungus, Neocallimastix, was significantly more abundant in NSG and SG samples, while Cyllamyces were more prevalent in NSG rumen than in the SG rumen. These findings imply that a diverse consortium of microbes may cooperate in response to fluctuating nutrient availability, with depletion of known rumen taxa under nutrient deficiency. Archaeal community composition showed less variation between treatments than bacterial and fungal communities. Additionally, Orpinomyces was significantly positively correlated with acetate levels, both of which are prevalent in GSG compared with other groups. Correlation analysis between microbial taxa and VFA production or between specific rumen microbes further illustrated a collective response to nutrient availability by gut microbiota and rumen VFA metabolism. PICRUSt and FUNGuild functional prediction analysis indicated fluctuation response of the function of microbial communities among groups. These results provide a framework for understanding how microbiota participate in seasonal adaptations to forage availability in high-altitude ruminants, and form a basis for future development of probiotic supplements to enhance nutrient utilization in livestock.

9.
BMC Microbiol ; 22(1): 213, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-36071396

RESUMO

BACKGROUND: Rumen microbes play an important role in ruminant energy supply and animal performance. Previous studies showed that the rumen microbiome of Mongolian cattle has adapted to degrade the rough forage to provide sufficient energy to tolerate the harsh desert ecological conditions. However, little is known about the succession of rumen microbes in different developmental stages of post-weaning Mongolian cattle. METHODS: Here, we examined the succession of the rumen microbial composition and structure of 15 post-weaning Mongolian cattle at three developmental stages i.e., 5 months (RM05), 18 months (RM18) and, 36 months (RM36) by using the 16S rRNA gene sequencing method. RESULTS: We did not find any age-dependent variations in the ruminal concentrations of any volatile fatty acid (VFA) of Mongolian cattle. The diversity of the rumen bacterial community was significantly lower in RM05 group, which reached to stability with age. Bacteroidetes and Firmicutes were the two dominant phyla among all age groups. Phylum Actinobacteria was significantly higher in RM05 group, phyla Spirochaetes, and Tenericutes were highly abundant in RM18 group, and phyla Proteobacteria and Epsilonbacteraeota were enriched in RM36 group. Genera Prevotella_1, Bacteroides, and Bifidobacterium were abundant in RM05 group. The short chain fatty acid (SCFA) producing bacteria Rikenellaceae_RC9_gut_group showed high abundance in RM18 group and fiber degrading genus Alloprevotella was highly abundant in RM36 group. Random forest analysis identified Alloprevotella, Ileibacterium, and Helicobacter as important age discriminatory genera. In particular, the genera Ruminococcaceae_UCG-005, Bacteroides, Saccharofermentans, and Fibrobacter in RM05, genera [Eubacterium] coprostanoligenes_group, Erysipelotrichaceae_UCG-004, Helicobacter, Saccharofermentans, Papillibacter, and Turicibacter in RM18, and genera Rikenellaceae_RC9_gut_group, Lachnospiraceae_AC2044_group, and Papillibacter in RM36 showed the top interactions values in the intra-group interaction network. CONCLUSIONS: The results showed that rumen microbiota of Mongolian cattle reached to stability and maturity with age after weaning. This study provides some theoretical evidence about the importance of functional specific rumen bacteria in different age groups. Further studies are needed to determine their actual roles and interactions with the host.


Assuntos
Bactérias , Rúmen , Animais , Bacteroidetes/genética , Bovinos , Firmicutes/genética , RNA Ribossômico 16S/genética , Rúmen/microbiologia , Análise de Sequência de DNA , Desmame
10.
Front Microbiol ; 13: 982338, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147854

RESUMO

The yak (Bos grunniens), an indigenous bovine on the Qinghai-Tibetan plateau (QTP), is reported to digest low quality forage to a greater extent and to require less protein and energy for maintenance than the introduced Qaidam cattle (Bos taurus). Ruminal bacteria play a major role in feed degradation, and therefore, we hypothesized that ruminal bacteria composition would differ between yaks and cattle, and confer an advantage to yaks for poor quality diets. To test our hypothesis, we determined the ruminal bacteria profiles, rumen fermentation parameters, and enzyme activities in these bovine species consuming a low-protein diet differing in energy level. Six castrated yaks (155 ± 5.8 kg) and 6 castrated Qaidam cattle (154 ± 8.0 kg) were used in two concurrent 4 × 4 Latin square designs with 2 additional animals of each species in each period. The animals were offered a low-protein diet of 70.4 g/kg dry matter (DM) and one of four metabolizable energy levels, namely 6.62, 8.02, 9.42, and 10.80 MJ/kg. Ruminal pH, concentrations of ammonia-N and total volatile fatty acids (VFAs), the molar proportion of acetate, and the ratio of acetate to propionate (A:P) were greater (P < 0.05), whereas the molar proportion of propionate was lesser (P = 0.043) in yaks than in cattle. With increasing dietary energy level, ruminal pH, the molar proportion of acetate and the ratio of A:P decreased linearly (P < 0.05), whereas, the concentration of total VFAs, molar proportions of propionate, butyrate, iso-butyrate, and iso-valerate and concentration of ammonia-N increased linearly (P < 0.05). The relative abundance (RA) of Firmicutes increased linearly (P < 0.01), whereas, the RA of Bacteroidetes decreased linearly (P < 0.001) with increasing energy level in both bovine species. The RAs of Prevotella and Rikenellaceae_RC9_gut_group decreased linearly (P < 0.05) with increasing energy level in both yaks and cattle. The RAs of fibrolytic (e.g., Rikenellaceae_RC9_gut_group), and H2-incorporating (e.g., Quinella) bacteria were greater (P < 0.05) in yaks than in cattle. We concluded that the two bovines differ in ruminal bacterial profiles and rumen fermentation parameters, and confer an advantage to yaks over cattle in consuming a low protein diet with differing energy level.

11.
Bioresour Technol ; 362: 127801, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35995345

RESUMO

Hydrolytic bacteria are essential for the degradation of lignocellulose to produce biogas and organic fertilizers. In this study, sheep manure was used as substrate, and sheep manure slurry, yak rumen fluid and slurry from a biogas reactor (SBR) were used as inocula in single-stage anaerobic digestion. The SBR and rumen fluid inocula increased biogas production by 23% and 43%, respectively, when compared to solely sheep manure in the single-stage anaerobic digestion. The two-stage anaerobic digestion, with yak rumen fluid as inoculum in the hydrolytic reactor, increased the biogas production by 59, 86, and 58% compared with the control. Microbial analysis of the effluent revealed that yak rumen fluid contained hydrolytic bacteria such as Proteiniphilum, Jeotgalibaca, Fermentimonas, and Atopostipes to enhance the degradation of sheep manure and increase biogas production. It was concluded that yak rumen fluid, rich in hydrolytic bacteria, increases the degradability of sheep manure and improves production of volatile fatt acids and biogas.


Assuntos
Biocombustíveis , Esterco , Anaerobiose , Animais , Bactérias/metabolismo , Biocombustíveis/microbiologia , Reatores Biológicos/microbiologia , Bovinos , Esterco/microbiologia , Metano , Rúmen/microbiologia , Ovinos
12.
Front Microbiol ; 13: 916735, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35733965

RESUMO

The Qinghai-Tibetan Plateau offers one of the most extreme environments for yaks (Bos grunniens). Although the genetic adaptability of yak and rumen metagenomes is increasingly understood, the relative contribution of host genetics and maternal symbiotic microbes throughout early intestinal microbial successions in yaks remains elusive. In this study, we assessed the intestinal microbiota succession of co-inhabiting yak and cattle (Bos taurus) calves at different weeks after birth as well as the modes of transmission of maternal symbiotic microbes (i.e., rumen fluid, feces, oral cavity, and breast skin) to their calves' intestinal microbiota colonization. We found that the fecal microbiota of yak and cattle calves after birth was dominated by members of the families Ruminococcaceae, Bacteroidaceae, and Lachnospiraceae. The Source Tracker model revealed that maternal fecal microbes played an important role (the average contribution was about 80%) in the intestinal microbial colonization of yak and cattle calves at different weeks after birth. Unlike cattle calves, there was no significant difference in the fecal microbiota composition of yak calves between 5 and 9 weeks after birth (Wilcoxon test, P > 0.05), indicating that yak may adapt to its natural extreme environment to stabilize its intestinal microbiota composition. Additionally, our results also find that the intestinal microbial composition of yak and cattle calves, with age, gradually tend to become similar, and the differences between species gradually decrease. The findings of this study are vital for developing strategies to manipulate the intestinal microbiota in grazing yaks and cattle for better growth and performance on the Qinghai-Tibetan Plateau.

13.
Anim Nutr ; 9: 304-313, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35600543

RESUMO

The symbiotic relationship between the host and the rumen microbiome plays a crucial role in ruminant physiology. One of the most important processes enabling this relationship is urea nitrogen salvaging (UNS). This process is important for both maintaining ruminant nitrogen balance and supporting production of their major energy supply, bacterially-derived short chain fatty acids (SCFA). The key step in UNS is the trans-epithelial movement of urea across the ruminal wall and this is a highly regulated process. At the molecular level, the key transport route is via the facilitative urea transporter-B2, localized to ruminal papillae epithelial layers. Additional urea transport through aquaporins (AQP), such as AQP3, is now also viewed as important. Long-term regulation of these ruminal urea transport proteins appears to mainly involve dietary fermentable carbohydrates; whereas, transepithelial urea transport is finely regulated by local conditions, such as CO2 levels, pH and SCFA concentration. Although the key principles of ruminal urea transport physiology are now understood, there remains much that is unknown regarding the regulatory pathways. One reason for this is the limited number of techniques currently used in many studies in the field. Therefore, future research in this area that combines a greater range of techniques could facilitate improvements to livestock efficiency, and potentially, reductions in the levels of waste nitrogen entering the environment.

14.
Anim Nutr ; 9: 249-258, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35600551

RESUMO

The yak (Bos grunniens), an indigenous herbivore raised at altitudes between 3,000 and 5,000 m above sea level, is closely linked to more than 40 ethnic communities and plays a vital role in the ecological stability, livelihood security, socio-economic development, and ethnic cultural traditions in the Asian highlands. They provide the highlanders with meat, milk, fibres, leather and dung (fuel). They are also used as pack animals to transport goods, for travel and ploughing, and are important in many religious and traditional ceremonies. The Asian highlands are known for an extremely, harsh environment, namely low air temperature and oxygen content and high ultraviolet light and winds. Pasture availability fluctuates greatly, with sparse pasture of poor quality over the long seven-month cold winter. After long-term natural and artificial selections, yaks have adapted excellently to the harsh conditions: 1) by genomics, with positively selected genes involved in hypoxia response and energy metabolism; 2) anatomically, including a short tongue with a weak sense of taste, and large lung and heart; 3) physiologically, by insensitivity to hypoxic pulmonary vasoconstriction, maintaining foetal haemoglobin throughout life, and low heart rate and heat production in the cold season; 4) behaviourlly, by efficient grazing and selecting forbs with high nutritional contents; 5) by low nitrogen and energy requirements for maintenance and low methane emission and nitrogen excretion, namely, 'Low-Carbon' and 'Nitrogen-Saving' traits; 6) by harboring unique rumen microbiota with a distinct maturation pattern, that has co-evolved with host metabolism. This review aims to provide an overview of the comprehensive adaptive strategies of the yak to the severe conditions of the highlands. A better understanding of these strategies that yaks employ to adapt to the harsh environment could be used in improving their production, breeding and management, and gaining benefits in ecosystem service and a more resilient livelihood to climate change in the Asian highlands.

15.
Front Nutr ; 9: 845086, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35600819

RESUMO

The human gut microbiota has been proposed to serve as a multifunctional organ in host metabolism, contributing effects to nutrient acquisition, immune response, and digestive health. Fasting during Ramadan may alter the composition of gut microbiota through changes in dietary behavior, which ultimately affects the contents of various metabolites in the gut. Here, we used liquid chromatography-mass spectrometry-based metabolomics to investigate the composition of fecal metabolites in Chinese and Pakistani individuals before and after Ramadan fasting. Principal component analysis showed distinct separation of metabolite profiles among ethnic groups as well as between pre- and post-fasting samples. After Ramadan fasting, the Chinese and Pakistani groups showed significant differences in their respective contents of various fecal metabolites. In particular, L-histidine, lycofawcine, and cordycepin concentrations were higher after Ramadan fasting in the Chinese group, while brucine was enriched in the Pakistani group. The KEGG analysis suggested that metabolites related to purine metabolism, 2-oxocarboxylic acid metabolism, and lysine degradation were significantly enriched in the total subject population pre-fasting vs. post-fasting comparisons. Several bacterial taxa were significantly correlated with specific metabolites unique to each ethnic group, suggesting that changes in fecal metabolite profiles related to Ramadan fasting may be influenced by associated shifts in gut microbiota. The fasting-related differences in fecal metabolite profile, together with these group-specific correlations between taxa and metabolites, support our previous findings that ethnic differences in dietary composition also drive variation in gut microbial composition and diversity. This landscape view of interconnected dietary behaviors, microbiota, and metabolites contributes to the future development of personalized, diet-based therapeutic strategies for gut-related disorders.

16.
Front Microbiol ; 13: 846336, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432278

RESUMO

Global warming is one of the most common environmental challenges faced by cold-water fish farming. Heat stress seriously affects the feeding, growth, immunity, and disease resistance of fish. These changes are closely related to the destruction of intestinal barrier function, the change of intestinal microbiota, and metabolic dysfunction. However, the causal relationship between the phenotypic effects of heat stress as well as intestinal and metabolic functions of fish is unknown. In the current study, the optimal growth temperature (16°C) of rainbow trout was used as the control group, while the fish treated at 22.5°C, 23.5°C, and 24.5°C for 24 h, respectively, were the treatment groups. The 16S rRNA gene sequencing analysis showed that with the increase in temperature, the relative abundance and diversity of intestinal microbiota decreased significantly, while the number of Mycoplasma, Firmicutes, and Tenericutes increased significantly. Non-targeted metabolomics analysis by liquid chromatography-mass spectrometry analysis and correlation analysis showed that the changes of metabolites related to amino acids, vitamins, and short-chain fatty acids in serum of rainbow trout under acute heat stress were strongly correlated with the decrease of relative abundance of various intestinal microbiota, especially Morganella, Enterobacter, Lactobacillus, Lawsonia, and Cloacibacterium. In addition, we also found that acute heat stress seriously affected the intestinal structure and barrier function, and also caused the pathological damage of epithelial cells. These results indicate that the gut microbiome of acute heat-stressed rainbow trout could mediate metabolite transfer through the gut barrier by affecting its integrity. Significant changes in gut morphology, permeability, antioxidant capacity, and pro-inflammatory cytokine levels were observed. Therefore, it is necessary to explore the changes of intestinal microbiota under heat stress to help understand the regulatory mechanism of heat stress and protect the intestinal health of rainbow trout from the negative effects of rising water temperature.

17.
Animals (Basel) ; 12(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35158649

RESUMO

As the global climate warms, more creatures are threatened by high temperatures, especially cold-water fish such as rainbow trout. Evidence has demonstrated that long noncoding RNAs (lncRNAs) play a pivotal role in regulating heat stress in animals, but we have little understanding of this regulatory mechanism. The present study aimed to identify potential key lncRNAs involved in regulating acute heat stress in rainbow trout. lncRNA and mRNA expression profiles of rainbow trout head kidney were analyzed via high-throughput RNA sequencing, which exhibited that 1256 lncRNAs (802 up-regulation, 454 down-regulation) and 604 mRNAs (353 up-regulation, 251 down-regulation) were differentially expressed. These differentially expressed genes were confirmed to be primarily associated with immune regulation, apoptosis, and metabolic process signaling pathways through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis and coding-noncoding co-expression network analysis. These results suggested that 18 key lncRNA-mRNA pairs are essential in regulating acute heat stress in rainbow trout. Overall, these analyses showed the effects of heat stress on various physiological functions in rainbow trout at the transcriptome level, providing a theoretical basis for improving the production and breeding of rainbow trout and the selection of new heat-resistant varieties.

18.
J Appl Microbiol ; 132(3): 1652-1665, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34623737

RESUMO

AIMS: Yak is a dominant ruminant, well adapted to grazing on pasture year around in the harsh climate of the 3000-meter-high Qinghai-Tibetan Plateau. The complex microbial community that resides within the yak rumen is responsible for fermentation and contributes to its climatic adaptation. This study aimed to characterize the rumen microbiota responses to wide seasonal variations, especially those necessary for survival in the cold seasons. METHODS AND RESULTS: In the present study, we performed 16s rRNA gene sequencing to investigate the seasonal variations in microbiota composition, diversity and associated volatile fatty acids (VFAs) in yak rumen. The results showed that rumen microbiota were dominated by Bacteroides (72.13%-78.54%) and Firmicutes; the relative abundance of Firmicutes was higher in summer (17.44%) than in winter (10.67%; p < 0.05). The distribution of taxa differed among spring, summer and winter rumen communities (PERMANOVA, p = 0.001), whereas other taxa (e.g., Fibrobacter, Verrucomicrobia, Anaerostipes and Paludibacter), which could potentially help overcome harsh climate conditions were observed in higher abundance during the cold spring and winter seasons. The highest total VFA concentration in the yak rumen was obtained in summer (p < 0.05), followed by spring and winter, and both positive and negative correlations between VFAs and specific genera were revealed. CONCLUSIONS: Microbiota in yak rumen appear to be highly responsive to seasonal variations. Considering environmental factors, we suggest that seasonal adaptation by microbial communities in rumen enables their hosts to survive seasonal scarcity and cold stress in the spring and winter. SIGNIFICANCE AND IMPACT OF STUDY: The present study furthers our understanding of how microbial adaptation to seasonal variations in nutrient availability and climate may function in high plateau ruminants, providing insights into the tripartite relationship between the environment, host and microbiota.


Assuntos
Microbiota , Rúmen , Animais , Bovinos , Ácidos Graxos Voláteis , Microbiota/fisiologia , RNA Ribossômico 16S/genética , Estações do Ano
19.
Br J Nutr ; 127(8): 1132-1142, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-34085612

RESUMO

Seasonal energy intake of Tibetan sheep on the harsh Qinghai-Tibetan Plateau (QTP) fluctuates greatly and is often well below maintenance requirements. The aim of this study was to gain insight into how the hypothalamus regulates energy homoeostasis in Tibetan sheep. We compared Tibetan and Small-tailed Han sheep (n 24 of each breed), which were each allocated randomly into four groups and offered one of four diets that differed in digestible energy densities: 8·21, 9·33, 10·45 and 11·57 MJ/kg DM. Sheep were weighed every 2 weeks, and it was assumed that the change in body weight (BW) reflected the change in energy balance. The arcuate nucleus of the hypothalamus in Tibetan sheep had greater protein expressions of neuropeptide Y (NPY) and agouti-related peptide (AgRP) when in negative energy balance, but lesser protein expressions of proopiomelanocortin (POMC) and cocaine and amphetamine-regulated transcript (CART) when in positive energy balance than Small-tailed Han sheep. As a result, Tibetan sheep had a lesser BW loss when in negative energy balance and stored more energy and gained more BW when in positive energy balance than Small-tailed Han sheep with the same dietary intake. Moreover, in the hypothalamic adenosine monophosphate-activated protein kinase (AMPK) regulation pathway, Tibetan sheep had greater adenosine monophosphate-activated protein kinase-α 2 protein expression than Small-tailed Han sheep, which supported the premise of a better ability to regulate energy homoeostasis and better growth performance. These differences in the hypothalamic NPY/AgRP, POMC/CART and AMPK pathways between breeds conferred an advantage to the Tibetan over Small-tailed Han sheep to cope with low energy intake on the harsh QTP.


Assuntos
Dieta , Ingestão de Energia , Proteína Relacionada com Agouti , Animais , Dieta/veterinária , Ingestão de Energia/fisiologia , Homeostase , Hipotálamo , Pró-Opiomelanocortina , Ovinos , Tibet
20.
Reprod Domest Anim ; 57(3): 292-303, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34850471

RESUMO

Post-partum ovarian cycle arrest is the main factor affecting yak reproductive efficiency. There are few reports regarding the molecular regulatory mechanism of post-partum oestrus at transcriptome and proteome levels in yaks. Our previous studies focussed on the ovaries of yaks with post-partum ovarian cycle arrest and post-partum oestrus yaks. In this study, RNA sequencing transcriptomic study was combined with quantitative proteomic analyses to identify post-partum ovarian cycle-related genes and proteins. Consequently, 1,149 genes and 24 proteins were found to be up- or downregulated during post-partum oestrus. The analysis of differentially regulated genes identified three gene or protein pairs that were synchronously upregulated and no gene or protein pairs that were synchronously downregulated, suggesting that these upregulated genes may regulate the post-partum ovarian cycle. The functional classification of these differentially expressed genes and proteins indicated their connection with the oocyte meiosis, the oestrogen signalling pathway, the progesterone-mediated oocyte maturation and the gonadotrophin-releasing hormone (GnRH) signalling pathway. In this study, a total of six genes and two proteins involved in the oocyte meiosis, the oestrogen signalling pathway, the progesterone-mediated oocyte maturation and the GnRH signalling pathway were identified. The CSNK1A1, M91_09723, M91_11326, M91_21439, M91_19073, SHC2, Atf6b, M91_03062, HSPCA and calmodulin could regulate oestrus, respectively, in the post-partum so as to control the anoestrus status.


Assuntos
Proteômica , Transcriptoma , Animais , Bovinos , Feminino , Ciclo Menstrual , Ovário/metabolismo , Período Pós-Parto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA