Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ecol ; 32(11): 2750-2765, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36852430

RESUMO

Fungal communities are diverse and abundant in coastal waters, yet, their ecological roles and adaptations remain largely unknown. To address these gaps, ITS2 metabarcoding and metatranscriptomic analyses were used to capture the whole suite of fungal diversity and their metabolic potential in water column and sediments in the Yellow Sea during August and October 2019. ITS2 metabarcoding described successfully the abundance of Dikarya during August and October at the different examined habitats, but strongly underrepresented or failed to identify other fungal taxa, including zoosporic and early-diverging lineages, that were abundant in the mycobiome as uncovered by metatranscriptomes. Metatranscriptomics also revealed enriched expression of genes annotated to zoosporic fungi (e.g., chytrids) mainly in the surface water column in October. This enriched expression was correlated with the two-fold increase in chlorophyll-a intensity attributed to phytoplanktonic species which are known to be parasitized by chytrids. The concurrent high expression of genes related to calcium signalling and GTPase activity suggested that these metabolic traits facilitate the parasitic lifestyle of chytrids. Similarly, elevated expression of phagosome genes annotated to Rozellomycota, an early-diverging fungal phylum not fully detected with ITS2 metabarcoding, suggested that this taxon utilizes a suite of feeding modes, including phagotrophy in this coastal setting. Our data highlight the necessity of using combined approaches to accurately describe the community structure of coastal mycobiome. We also provide in-depth insights into the fungal ecological roles in coastal waters, and report potential metabolic mechanisms utilized by fungi to cope with environmental stresses that occur during distinct seasonal months in coastal ecosystems.


Assuntos
Ecossistema , Micobioma , Fungos/genética , Micobioma/genética , China , Microbiologia da Água , Água do Mar/microbiologia
2.
Mol Ecol ; 30(14): 3624-3637, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34002437

RESUMO

Little is known about how multiple factors including land-based inputs and ocean currents affect the spatiotemporal distribution of the mycoplankton in coastal regions. To explore the seasonal changes of mycoplanktonic communities and potential environmental drivers, we collected water samples from the Yellow Sea, used here as a model for subtropical sea habitats, in different seasons over two years. Compared with winter and spring, summer exhibited higher levels of fungal richness and community heterogeneity in the water column. The seasonal shifts in mycoplankton diversity and community composition were mainly ascribed to freshwater inputs, the Cold Water Mass and invasion of the Yellow Sea Warm Current. Among the physicochemical variables tested, temperature was the primary determinant of fungal diversity and showed contrasting influences on fungal richness in the surface and bottom waters during summer. In addition, we provide evidence for the community similarity and dissolved nutrients of different water bodies to highlight the potential origin of the Cold Water Mass. Our findings bring new understanding on the factors determining the dynamics of mycoplankton communities by modelling the influence of physicochemical variables and tracking the geographical distribution of certain fungal taxa.


Assuntos
Ecossistema , Fungos , Estações do Ano , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA