Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PeerJ ; 10: e14268, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36317118

RESUMO

Background: Sagittaria trifolia Linn. is a widespread macrophyte in Asia and southeast Europe and cultivated in parts of Asia. Although a few genomic studies have been conducted for S. trifolia var. sinensis, a crop breed, there is limited genomic information on the wild species of S. trifolia. Effective microsatellite markers are also lacking. Objective: To assemble transcriptome sequence and develop effective EST-SSR markers for S. trifolia. Methods: Here we developed microsatellite markers based on tri-, tetra-, penta-, and hexa-nucleotide repeat sequences by comparatively screening multiple transcriptome sequences of eleven individuals from ten natural populations of S. trifolia. Results: A total of 107,022 unigenes were de novo assembled, with a mean length of 730 bp and an N50 length of 1,378 bp. The main repeat types were mononucleotide, trinucleotide, and dinucleotide, accounting for 55.83%, 23.51%, and 17.56% of the total repeats, respectively. A total of 86 microsatellite loci were identified with repeats of tri-, tetra-, penta-, and hexa-nucleotide. For SSR verification, 28 polymorphic loci from 41 randomly picked markers were found to produce stable and polymorphic bands, with the number of alleles per locus ranging from 2 to 11 and a mean of 5.2. The range of polymorphic information content (PIC) of each SSR locus varied from 0.25 to 0.80, with an average of 0.58. The expected heterozygosity ranged from 0.29 to 0.82, whereas the observed heterozygosity ranged from 0.25 to 0.90. Conclusion: The assembled transcriptome and annotated unigenes of S. trifolia provide a basis for future studies on gene functions, pathways, and molecular mechanisms associated with this species and other related. The newly developed EST-SSR markers could be effective in examining population genetic structure, differentiation, and parentage analyses in ecological and evolutionary studies of S. trifolia.


Assuntos
Sagittaria , Transcriptoma , Humanos , Transcriptoma/genética , Marcadores Genéticos/genética , Melhoramento Vegetal , Sequenciamento de Nucleotídeos em Larga Escala , Nucleotídeos
2.
PeerJ ; 7: e8025, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31799070

RESUMO

Chloroplasts are typically inherited from the female parent and are haploid in most angiosperms, but rare intra-individual heteroplasmy in plastid genomes has been reported in plants. Here, we report an example of plastome heteroplasmy and its characteristics in Gentiana tongolensis (Gentianaceae). The plastid genome of G. tongolensis is 145,757 bp in size and is missing parts of petD gene when compared with other Gentiana species. A total of 112 single nucleotide polymorphisms (SNPs) and 31 indels with frequencies of more than 2% were detected in the plastid genome, and most were located in protein coding regions. Most sites with SNP frequencies of more than 10% were located in six genes in the LSC region. After verification via cloning and Sanger sequencing at three loci, heteroplasmy was identified in different individuals. The cause of heteroplasmy at the nucleotide level in plastome of G. tongolensis is unclear from the present data, although biparental plastid inheritance and transfer of plastid DNA seem to be most likely. This study implies that botanists should reconsider the heredity and evolution of chloroplasts and be cautious with using chloroplasts as genetic markers, especially in Gentiana.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA