Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Mol Genet Genomics ; 291(3): 1491-504, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26825750

RESUMO

A gene-level targeted enrichment method for direct detection of epigenetic modifications is described. The approach is demonstrated on the CGG-repeat region of the FMR1 gene, for which large repeat expansions, hitherto refractory to sequencing, are known to cause fragile X syndrome. In addition to achieving a single-locus enrichment of nearly 700,000-fold, the elimination of all amplification steps removes PCR-induced bias in the repeat count and preserves the native epigenetic modifications of the DNA. In conjunction with the single-molecule real-time sequencing approach, this enrichment method enables direct readout of the methylation status and the CGG repeat number of the FMR1 allele(s) for a clonally derived cell line. The current method avoids potential biases introduced through chemical modification and/or amplification methods for indirect detection of CpG methylation events.


Assuntos
Epigênese Genética , Proteína do X Frágil da Deficiência Intelectual/genética , Análise de Sequência de DNA/métodos , Linhagem Celular , Metilação de DNA , Feminino , Síndrome do Cromossomo X Frágil/genética , Humanos , Sequências de Repetição em Tandem
2.
J Med Genet ; 52(1): 42-52, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25358671

RESUMO

BACKGROUND: Over 40% of male and ∼16% of female carriers of a premutation FMR1 allele (55-200 CGG repeats) will develop fragile X-associated tremor/ataxia syndrome, an adult onset neurodegenerative disorder, while about 20% of female carriers will develop fragile X-associated primary ovarian insufficiency. Marked elevation in FMR1 mRNA transcript levels has been observed with premutation alleles, and RNA toxicity due to increased mRNA levels is the leading molecular mechanism proposed for these disorders. However, although the FMR1 gene undergoes alternative splicing, it is unknown whether all or only some of the isoforms are overexpressed in premutation carriers and which isoforms may contribute to the premutation pathology. METHODS: To address this question, we have applied a long-read sequencing approach using single-molecule real-time (SMRT) sequencing and qRT-PCR. RESULTS: Our SMRT sequencing analysis performed on peripheral blood mononuclear cells, fibroblasts and brain tissue samples derived from premutation carriers and controls revealed the existence of 16 isoforms of 24 predicted variants. Although the relative abundance of all mRNA isoforms was significantly increased in the premutation group, as expected based on the bulk increase in mRNA levels, there was a disproportionate (fourfold to sixfold) increase, relative to the overall increase in mRNA, in the abundance of isoforms spliced at both exons 12 and 14, specifically Iso10 and Iso10b, containing the complete exon 15 and differing only in splicing in exon 17. CONCLUSIONS: These findings suggest that RNA toxicity may arise from a relative increase of all FMR1 mRNA isoforms. Interestingly, the Iso10 and Iso10b mRNA isoforms, lacking the C-terminal functional sites for fragile X mental retardation protein function, are the most increased in premutation carriers relative to normal, suggesting a functional relevance in the pathology of FMR1-associated disorders.


Assuntos
Ataxia/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/genética , Insuficiência Ovariana Primária/genética , Isoformas de RNA/genética , RNA Mensageiro/genética , Análise de Sequência de DNA/métodos , Tremor/genética , Adulto , Sequência de Bases , Primers do DNA/genética , Feminino , Componentes do Gene , Perfilação da Expressão Gênica , Biblioteca Gênica , Humanos , Masculino , Dados de Sequência Molecular , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
3.
PLoS Genet ; 10(4): e1004294, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24743386

RESUMO

Expansion of a trinucleotide (CGG) repeat element within the 5' untranslated region (5'UTR) of the human FMR1 gene is responsible for a number of heritable disorders operating through distinct pathogenic mechanisms: gene silencing for fragile X syndrome (>200 CGG) and RNA toxic gain-of-function for FXTAS (∼ 55-200 CGG). Existing models have focused almost exclusively on post-transcriptional mechanisms, but co-transcriptional processes could also contribute to the molecular dysfunction of FMR1. We have observed that transcription through the GC-rich FMR1 5'UTR region favors R-loop formation, with the nascent (G-rich) RNA forming a stable RNA:DNA hybrid with the template DNA strand, thereby displacing the non-template DNA strand. Using DNA:RNA (hybrid) immunoprecipitation (DRIP) of genomic DNA from cultured human dermal fibroblasts with both normal (∼ 30 CGG repeats) and premutation (55

Assuntos
Proteína do X Frágil da Deficiência Intelectual/genética , Transcrição Gênica/genética , Expansão das Repetições de Trinucleotídeos/genética , Regiões 5' não Traduzidas/genética , Alelos , Células Cultivadas , DNA de Cadeia Simples/genética , Fibroblastos/metabolismo , Humanos , Hibridização Genética/genética , RNA/genética
4.
Genome Res ; 23(1): 121-8, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23064752

RESUMO

The human fragile X mental retardation 1 (FMR1) gene contains a (CGG)(n) trinucleotide repeat in its 5' untranslated region (5'UTR). Expansions of this repeat result in a number of clinical disorders with distinct molecular pathologies, including fragile X syndrome (FXS; full mutation range, greater than 200 CGG repeats) and fragile X-associated tremor/ataxia syndrome (FXTAS; premutation range, 55-200 repeats). Study of these diseases has been limited by an inability to sequence expanded CGG repeats, particularly in the full mutation range, with existing DNA sequencing technologies. Single-molecule, real-time (SMRT) sequencing provides an approach to sequencing that is fundamentally different from other "next-generation" sequencing platforms, and is well suited for long, repetitive DNA sequences. We report the first sequence data for expanded CGG-repeat FMR1 alleles in the full mutation range that reveal the confounding effects of CGG-repeat tracts on both cloning and PCR. A unique feature of SMRT sequencing is its ability to yield real-time information on the rates of nucleoside addition by the tethered DNA polymerase; for the CGG-repeat alleles, we find a strand-specific effect of CGG-repeat DNA on the interpulse distance. This kinetic signature reveals a novel aspect of the repeat element; namely, that the particular G bias within the CGG/CCG-repeat element influences polymerase activity in a manner that extends beyond simple nearest-neighbor effects. These observations provide a baseline for future kinetic studies of repeat elements, as well as for studies of epigenetic and other chemical modifications thereof.


Assuntos
Alelos , Proteína do X Frágil da Deficiência Intelectual/genética , Análise de Sequência de DNA/métodos , Regiões 5' não Traduzidas , Sequência de Bases , Humanos , Dados de Sequência Molecular , Mutação , Expansão das Repetições de Trinucleotídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA