Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J R Soc Interface ; 19(193): 20220319, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35919983

RESUMO

Measuring the three-dimensional motion of trees at every position remains challenging as it requires dynamic measurement technology with sufficient spatial and temporal resolution. Consequently, this study explores the use of a novel multi-beam flash light detection and ranging (LiDAR) sensor to tackle such a sensing barrier. A framework is proposed to record tree vibrations, to construct the motions of tree skeletons from the point-cloud frames recorded by the LiDAR sensor and to derive the dynamic properties of trees. The feasibility of the framework is justified through measurement on a Ficus microcarpa under pull-and-release tests. The relative differences for the first two modal frequencies between the LiDAR and linear variable differential transformer measurements in the displacement Fourier spectra are 0.1% and 2.5%, respectively. The framework is further adopted to study the dynamic response of different trees subjected to typhoons, including a Liquidambar formosana, three Araucaria heterophylla trees, a Sterculia lanceolata, a Celtis sinensis, a Tabebuia chrysantha and a Cinnamomum camphora. Results suggest that broadleaved trees might exhibit vibration in a wide frequency band, whereas the coniferous trees could follow a distinct dominant frequency.


Assuntos
Árvores , Vibração , Movimento (Física) , Árvores/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA