Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Omega ; 8(37): 33289-33298, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37744863

RESUMO

Wax deposition in high-wax (waxy) crude oil has been an important challenge in the oil and gas industry due to the repercussions in flow assurance during oil extraction and transportation. However, the nanotechnology has emerged as a potential solution for the optimization of conventional wax removal and/or inhibition processes due to its exceptional performance in the alteration of wax morphology and co-crystallization behavior. In this sense, this study aims to study the performance of two commercial wax inhibitor treatments (WT1 and WT2) on the wax formation and crystallization due to the addition of SiO2 nanoparticles. Differential scanning calorimetry experiments and cold finger tests were carried out to study the effect of the WT on wax appearance temperature (WAT) and the wax inhibition efficiency (WIE) in a scenario with an initial temperature difference. In the first stage, the behavior of both WT in the inhibition of wax deposition was achieved, ranging in the concentration of the WT in the waxy crude (WC) oil from 5000 to 50,000 mg·L-1. Then, NanoWT was prepared by the addition of SiO2 nanoparticles on WT1 and WT2 for concentrations between 1000 and 500 mg·L-1, and the performance of the prepared NanoWT was studied at the best concentration of WIT in the absence of nanoparticles. Finally, the role of the nanofluid concentration in wax inhibition was accomplished for the best NanoWT. Selected NanoWT with nanoparticle dosage of 100 mg·L-1 added to WC oil at 5000 mg·L-1 displays reductions in WAT and WIE of 15.3 and 71.6 for NanoWT1 and -2.2 and 42.5% for NanoWT2. In flow loop experiments for the crude oil at temperatures above (30 °C) and below (16 °C), the WAT value indicates an increase of 8.3 times the pressure drops when the crude oil is flowing at a temperature below the WAT value. Therefore, when NanoWT1 is added to the crude oil, a reduction of 31.8% was found in the pressure drop in comparison with the scenario below the WAT value, ensuring the flow assurance in the pipeline in an unfavorable environment. Based on the pressure-drop method, a reduction greater than 5% in the wax deposit thickness confirms the wax deposition inhibitory character of the designed NanoWT.

2.
Nanomaterials (Basel) ; 12(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36145002

RESUMO

This study aimed to develop novel bio-nanofluids using Solanum torvum extracts in synergy with nanoparticles of different chemical nature as a proposal sustainable for enhanced oil recovery (EOR) applications. For this, saponin-rich extracts (SRE) were obtained from Solanum torvum fruit using ultrasound-assisted and Soxhlet extraction. The results revealed that Soxhlet is more efficient for obtaining SRE from Solanum torvum and that degreasing does not generate additional yields. SRE was characterized by Fourier transformed infrared spectrophotometry, thermogravimetric analysis, hydrophilic-lipophilic balance, and critical micelle concentration analyses. Bio-nanofluids based on SiO2 (strong acid), ZrO2 (acid), Al2O3 (neutral), and MgO (basic) nanoparticles and SRE were designed to evaluate the effect of the chemical nature of the nanoparticles on the SRE performance. The results show that 100 mg L-1 MgO nanoparticles improved the interfacial tension up to 57% and the capillary number increased by two orders of magnitude using this bio-nanofluid. SRE solutions enhanced with MgO recovered about 21% more than the system in the absence of nanoparticles. The addition of MgO nanoparticles did not cause a loss of injectivity. This is the first study on the surface-active properties of Solanum torvum enhanced with nanomaterials as an environmentally friendly EOR process.

3.
Nanomaterials (Basel) ; 12(13)2022 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-35808033

RESUMO

This study aims to develop and evaluate fracturing nanofluids from the laboratory to the field trial with the dual purpose of increasing heavy crude oil mobility and reducing formation damage caused by the remaining fracturing fluid (FF). Two fumed silica nanoparticles of different sizes, and alumina nanoparticles were modified on the surface through basic and acidic treatments. The nanoparticles were characterized by transmission electron microscopy, dynamic light scattering, zeta potential and total acidity. The rheological behavior of the linear gel and the heavy crude oil after adding different chemical nature nanoparticles were measured at two concentrations of 100 and 1000 mg/L. Also, the contact angle assessed the alteration of the rock wettability. The nanoparticle with better performance was the raw fumed silica of 7 nm at 1000 mg/L. These were employed to prepare a fracturing nanofluid from a commercial FF. Both fluids were evaluated through their rheological behavior as a function of time at high pressure following the API RP39 test, and spontaneous imbibition tests were carried out to assess the FF's capacity to modify the wettability of the porous media. It was possible to conclude that the inclusion of 7 nm commercial silica nanoparticles allowed obtaining a reduction of 10 and 20% in the two breakers used in the commercial fracture fluid formulation without altering the rheological properties of the system. Displacement tests were also performed on proppant and rock samples at reservoir conditions of overburden and pore pressures of 3200 and 1200 psi, respectively, while the temperature was set at 77 °C and the flow rate at 0.3 cm3/min. According to the effective oil permeability, a decrease of 31% in the damage was obtained. Based on these results, the fracturing nanofluid was selected and used in the first worldwide field application in a Colombian oil field with a basic sediment and water (BSW%) of 100 and without oil production. After two weeks of the hydraulic fracture operation, crude oil was produced. Finally, one year after this work, crude oil viscosity and BSW% kept showing reductions near 75% and 33%, respectively; and having passed two years, the cumulative incremental oil production is around 120,000 barrels.

4.
ACS Omega ; 5(43): 27800-27810, 2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33163763

RESUMO

This study aims to evaluate the behavior of Cardanol/SiO2 nanocomposites in the inhibition of the asphaltene damage based on the coreflooding test at reservoir conditions. The nanocomposite design was performed in Part I (https://doi.org/10.1021/acs.energyfuels.0c01114), leading to SiO2 nanoparticles functionalized with different mass fractions of cardanol on the surface of 5 (5CSN), 7 (7CSN), and 9% (9CSN). In this part of the study, the nanocomposite/reservoir fluid interactions were evaluated through interfacial tension measurements and nanocomposite/rock surface interactions using water imbibition and contact angle measurements. Results showed that the designed nanocomposite leads to a reduction of interfacial tension of 82.6, 61.7, and 51.4% for 5CSN, 7CSN, and 9CSN regarding silica support (SN). Whereas, the reduction of the Si-OH functional groups from SiO2 nanoparticles due to the increase of the cardanol content affects the effectiveness of the wettability alteration for 7CSN and 9CSN. Nevertheless, when 5CSN is evaluated, the system is altered from an oil-wet to a mixed-wet state. Coreflooding tests at reservoir conditions were performed to evaluate the oil recovery after asphaltene damage, after damage removal and nanofluid injection, and after induction of a second asphaltene damage to check inhibition. Results show that the selected nanocomposites at a dosage of 300 mg·L-1 enhance the oil recovery in comparison with the baseline conditions via the reduction of the interfacial/surface forces at the pore scale and wettability alteration. It is worth to remark that this improvement remains after the second asphaltene damage induction, which proves the high inhibitory capacity of the designed nanocomposite for the asphaltene precipitation/deposition. Also, the use of the nanocomposites favors the oil recovery more than 50% compared to the asphaltene damage scenario.

5.
Nanomaterials (Basel) ; 10(8)2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32796762

RESUMO

The primary objective of this study is to develop a novel experimental nanofluid based on surfactant-nanoparticle-brine tuning, subsequently evaluate its performance in the laboratory under reservoir conditions, then upscale the design for a field trial of the nanotechnology-enhanced surfactant injection process. Two different mixtures of commercial anionic surfactants (SA and SB) were characterized by their critical micelle concentration (CMC), density, and Fourier transform infrared (FTIR) spectra. Two types of commercial nanoparticles (CNA and CNB) were utilized, and they were characterized by SBET, FTIR spectra, hydrodynamic mean sizes (dp50), isoelectric points (pHIEP), and functional groups. The evaluation of both surfactant-nanoparticle systems demonstrated that the best performance was obtained with a total dissolved solid (TDS) of 0.75% with the SA surfactant and the CNA nanoparticles. A nanofluid formulation with 100 mg·L-1 of CNA provided suitable interfacial tension (IFT) values between 0.18 and 0.15 mN·m-1 for a surfactant dosage range of 750-1000 mg·L-1. Results obtained from adsorption tests indicated that the surfactant adsorption on the rock would be reduced by at least 40% under static and dynamic conditions due to nanoparticle addition. Moreover, during core flooding tests, it was observed that the recovery factor was increased by 22% for the nanofluid usage in contrast with a 17% increase with only the use of the surfactant. These results are related to the estimated capillary number of 3 × 10-5, 3 × 10-4, and 5 × 10-4 for the brine, the surfactant, and the nanofluid, respectively, as well as to the reduction in the surfactant adsorption on the rock which enhances the efficiency of the process. The field trial application was performed with the same nanofluid formulation in the two different injection patterns of a Colombian oil field and represented the first application worldwide of nanoparticles/nanofluids in enhanced oil recovery (EOR) processes. The cumulative incremental oil production was nearly 30,035 Bbls for both injection patterns by May 19, 2020. The decline rate was estimated through an exponential model to be -0.104 month-1 before the intervention, to -0.016 month-1 after the nanofluid injection. The pilot was designed based on a production increment of 3.5%, which was successfully surpassed with this field test with an increment of 27.3%. This application is the first, worldwide, to demonstrate surfactant flooding assisted by nanotechnology in a chemical enhanced oil recovery (CEOR) process in a low interfacial tension region.

6.
Nanomaterials (Basel) ; 9(12)2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31835515

RESUMO

The main objective of this study is to evaluate the injection of a dispersed nanocatalyst-based nanofluid in a steam stream for in situ upgrading and oil recovery during a steam injection process. The nanocatalyst was selected through adsorption and thermogravimetric experiments. Two nanoparticles were proposed, ceria nanoparticles (CeO2±Î´), with and without functionalization with nickel, and palladium oxides (CeNi0.89Pd1.1). Each one was employed for static tests of adsorption and subsequent decomposition using a model solution composed of n-C7 asphaltenes (A) and resins II (R) separately and for different R:A ratios of 2:8, 1:1, and 8:2. Then, a displacement test consisting of three main stages was successfully developed. At the beginning, steam was injected into the porous media at a temperature of 210 °C, the pore and overburden pressure were fixed at 150 and 800 psi, respectively, and the steam quality was 70%. This was followed by CeNi0.89Pd1.1 dispersed injection in the steam stream. Finally, the treatment was allowed to soak for 12 h, and the steam flooding was carried out again until no more oil production was observed. Among the most relevant results, functionalized nanoparticles achieved higher adsorption of both fractions as well as a lower decomposition temperature. The presence of resins did not affect the amount of asphaltene adsorption over the evaluated materials. The catalytic activity suggests that the increase in resin content promotes a higher conversion in a shorter period of time. Also, for the different steps of the dynamic test, increases of 25% and 42% in oil recovery were obtained for the dispersed injection of the nanofluid in the steam stream and after a soaking time of 12 h, compared with the base curve with only steam injection, respectively. The upgraded crude oil reached an API gravity level of 15.9°, i.e., an increase in 9.0° units in comparison with the untreated extra-heavy crude oil, which represents an increase of 130%. Also, reductions of up to 71% and 85% in the asphaltene content and viscosity were observed.

7.
Nanomaterials (Basel) ; 9(4)2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30939741

RESUMO

Production water is the largest byproduct of the oil industry and must be treated before disposal, either by reinjection or shedding processes, with the purpose of eliminating emulsified crude oil and avoiding the operational and toxic problems associated with it. The objective of this work was to immobilize a hydrocarbon-degrading strain on activated carbons, to evaluate the biocomplex's capacity for catalyzing hydrocarbons from Oil in Brine emulsions (O/W) simulating produced waters. Activated carbons were prepared and their chemical and porous properties were estimated by XPS, pHPZC and SEM, N2 adsorption, and mercury porosimetry. Biomaterials were synthesized and hydrocarbon removal tests were performed. The basic and neutral carbons immobilized Pseudomonas stutzeri by physisorption in the macroporous space and electrostatic interactions (108⁻108 UFC∙g-1), while acid materials inhibited bacterial growth. Removal of aromatic hydrocarbons was more efficient using materials (60%⁻93%) and biomaterials (16%⁻84%) than using free P. stutzeri (1%⁻47%), and the removal efficiencies of crude oil were 22%, 48% and 37% for P. stutzeri and two biomaterials, respectively. The presence of minor hydrocarbons only when P. stutzeri was present confirmed the biotransformation process.

8.
Nanomaterials (Basel) ; 10(1)2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-31905977

RESUMO

During enhanced oil recovery (EOR), reservoir heterogeneities and fluids distributions promote preferential flow channels formation. Therefore, different types of gels have been proposed to improve swept efficiency on chemical flooding by plugging high permeability zones. The purpose of this article is to evaluate the effect that nanotechnology has on the inhibition of syneresis and the rheological properties of the Acrylamide Sodium Acrylate Copolymer/Chromium (III) Acetate gel system for conformance applications in mature reservoirs. Thus, a methodology is proposed in four stages: First, (I) nanoparticles synthesis, and characterization, followed by (II) bottle tests to monitor gelation kinetics and syneresis degree at 70 °C, then (III) description of the rheological evaluation on static and dynamic conditions to calculate gelation time and viscoelastic modulus (G' and G"), and finally (IV) the displacement test with the best gel system in the presence of nanoparticles. Results showed that the best nanoparticle was the chromium oxide (Cr2O3), which represented the lesser syneresis degree and increased gelation time. Syneresis of gel samples in the presence of Cr2O3 at day 30 was under 1% for gels prepared with 4000, 6000, and 8000 mg·L-1 of polymer, and polymer to crosslinker ratio (p/c) of 40:1. Regarding SiO2, MgO, and Al2O3 nanoparticles, results show an improvement of gel strength. However, their thermal stability in terms of syneresis was lower. Displacement test in a triple parallel Slim Tube was able to recover an additional 37% of oil of the total oil present in the sandpacks, confirming the effectivity of the system when 100 mg·L-1 of Cr2O3 nanoparticles are included.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA