Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Environ Sci Atmos ; 3(1): 115-123, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36743126

RESUMO

OH scavengers are extensively used in studies of secondary organic aerosol (SOA) because they create an idealized environment where only a single oxidation pathway is occurring. Here, we present a detailed molecular characterization of SOA produced from α-pinene + O3 with a variety of OH scavengers using the extractive electrospray time-of-flight mass spectrometer in our atmospheric simulation chamber, which is complemented by characterizing the gas phase composition in flow reactor experiments. Under our experimental conditions, radical chemistry largely controls the composition of SOA. Besides playing their desired role in suppressing the reaction of α-pinene with OH, OH scavengers alter the reaction pathways of radicals produced from α-pinene + O3. This involves changing the HO2 : RO2 ratio, the identity of the RO2 radicals present, and the RO2 major sinks. As a result, the use of the OH scavengers has significant effects on the composition of SOA, including inclusions of scavenger molecules in SOA, the promotion of fragmentation reactions, and depletion of dimers formed via α-pinene RO2-RO2 reactions. To date fragmentation reactions and inclusion of OH scavenger products into secondary organic aerosol have not been reported in atmospheric simulation chamber studies. Therefore, care should be considered if and when to use an OH scavenger during experiments.

2.
Atmos Chem Phys ; 22(21): 14377-14399, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36506646

RESUMO

Volatile chemical products (VCPs) and other non-combustion-related sources have become important for urban air quality, and bottom-up calculations report emissions of a variety of functionalized compounds that remain understudied and uncertain in emissions estimates. Using a new instrumental configuration, we present online measurements of oxygenated organic compounds in a U.S. megacity over a 10-day wintertime sampling period, when biogenic sources and photochemistry were less active. Measurements were conducted at a rooftop observatory in upper Manhattan, New York City, USA using a Vocus chemical ionization time-of-flight mass spectrometer with ammonium (NH4 +) as the reagent ion operating at 1 Hz. The range of observations spanned volatile, intermediate-volatility, and semi-volatile organic compounds with targeted analyses of ~150 ions whose likely assignments included a range of functionalized compound classes such as glycols, glycol ethers, acetates, acids, alcohols, acrylates, esters, ethanolamines, and ketones that are found in various consumer, commercial, and industrial products. Their concentrations varied as a function of wind direction with enhancements over the highly-populated areas of the Bronx, Manhattan, and parts of New Jersey, and included abundant concentrations of acetates, acrylates, ethylene glycol, and other commonly-used oxygenated compounds. The results provide top-down constraints on wintertime emissions of these oxygenated/functionalized compounds with ratios to common anthropogenic marker compounds, and comparisons of their relative abundances to two regionally-resolved emissions inventories used in urban air quality models.

3.
Sci Rep ; 12(1): 4941, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35322134

RESUMO

Worldwide, health care professionals working in operating rooms (ORs) are exposed to electrocautery smoke on a daily basis. Aims of this study were to determine composition and concentrations of electrocautery smoke in the OR using mass spectrometry. Prospective observational study at a tertiary care academic center, involving 122 surgical procedures of which 84 were 1:1 computer randomized to smoke evacuation system (SES) versus no SES use. Irritating, toxic, carcinogenic and mutagenic VOCs were observed in OR air, with some exceeding permissible exposure limits (OSHA/NIOSH). Mean total concentration of harmful compounds was 272.69 ppb (± 189 ppb) with a maximum total concentration of harmful substances of 8991 ppb (at surgeon level, no SES). Maximum total VOC concentrations were 1.6 ± 1.2 ppm (minimally-invasive surgery) and 2.1 ± 1.5 ppm (open surgery), and total maximum VOC concentrations were 1.8 ± 1.3 ppm at the OR table 'at surgeon level' and 1.4 ± 1.0 ppm 'in OR room air' away from the operating table. Neither difference was statistically significant. In open surgery, SES significantly reduced maximum concentrations of specific VOCs at surgeon level, including aromatics and aldehydes. Our data indicate relevant exposure of health care professionals to volatile organic compounds in the OR. Surgical technique and distance to cautery devices did not significantly reduce exposure. SES reduced exposure to specific harmful VOC's during open surgery.Trial Registration Number: NCT03924206 (clinicaltrials.gov).


Assuntos
Exposição Ocupacional , Compostos Orgânicos Voláteis , Carcinógenos/análise , Eletrocoagulação/métodos , Exposição Ocupacional/análise , Salas Cirúrgicas , Estudos Prospectivos , Compostos Orgânicos Voláteis/análise
4.
Environ Sci Technol ; 56(4): 2213-2224, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35119266

RESUMO

Oxidation of the monoterpene Δ3-carene (C10H16) is a potentially important and understudied source of atmospheric secondary organic aerosol (SOA). We present chamber-based measurements of speciated gas and particle phases during photochemical oxidation of Δ3-carene. We find evidence of highly oxidized organic molecules (HOMs) in the gas phase and relatively low-volatility SOA dominated by C7-C10 species. We then use computational methods to develop the first stages of a Δ3-carene photochemical oxidation mechanism and explain some of our measured compositions. We find that alkoxy bond scission of the cyclohexyl ring likely leads to efficient HOM formation, in line with previous studies. We also find a surprising role for the abstraction of primary hydrogens from methyl groups, which has been calculated to be rapid in the α-pinene system, and suggest more research is required to determine if this is more general to other systems and a feature of autoxidation. This work develops a more comprehensive view of Δ3-carene photochemical oxidation products via measurements and lays out a suggested mechanism of oxidation via computationally derived rate coefficients.


Assuntos
Monoterpenos , Aerossóis/química , Monoterpenos Bicíclicos , Monoterpenos/química , Oxirredução
5.
Environ Sci Atmos ; 1(6): 434-448, 2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34604755

RESUMO

Aerosol particles negatively affect human health while also having climatic relevance due to, for example, their ability to act as cloud condensation nuclei. Ultrafine particles (diameter D p < 100 nm) typically comprise the largest fraction of the total number concentration, however, their chemical characterization is difficult because of their low mass. Using an extractive electrospray time-of-flight mass spectrometer (EESI-TOF), we characterize the molecular composition of freshly nucleated particles from naphthalene and ß-caryophyllene oxidation products at the CLOUD chamber at CERN. We perform a detailed intercomparison of the organic aerosol chemical composition measured by the EESI-TOF and an iodide adduct chemical ionization mass spectrometer equipped with a filter inlet for gases and aerosols (FIGAERO-I-CIMS). We also use an aerosol growth model based on the condensation of organic vapors to show that the chemical composition measured by the EESI-TOF is consistent with the expected condensed oxidation products. This agreement could be further improved by constraining the EESI-TOF compound-specific sensitivity or considering condensed-phase processes. Our results show that the EESI-TOF can obtain the chemical composition of particles as small as 20 nm in diameter with mass loadings as low as hundreds of ng m-3 in real time. This was until now difficult to achieve, as other online instruments are often limited by size cutoffs, ionization/thermal fragmentation and/or semi-continuous sampling. Using real-time simultaneous gas- and particle-phase data, we discuss the condensation of naphthalene oxidation products on a molecular level.

6.
Atmos Chem Phys ; 20(12): 8201-8225, 2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32983235

RESUMO

Atmospheric aerosols are a significant public health hazard and have substantial impacts on the climate. Secondary organic aerosols (SOAs) have been shown to phase separate into a highly viscous organic outer layer surrounding an aqueous core. This phase separation can decrease the partitioning of semi-volatile and low-volatile species to the organic phase and alter the extent of acid-catalyzed reactions in the aqueous core. A new algorithm that can determine SOA phase separation based on their glass transition temperature (T g), oxygen to carbon (O : C) ratio and organic mass to sulfate ratio, and meteorological conditions was implemented into the Community Multiscale Air Quality Modeling (CMAQ) system version 5.2.1 and was used to simulate the conditions in the continental United States for the summer of 2013. SOA formed at the ground/surface level was predicted to be phase separated with core-shell morphology, i.e., aqueous inorganic core surrounded by organic coating 65.4 % of the time during the 2013 Southern Oxidant and Aerosol Study (SOAS) on average in the isoprene-rich southeastern United States. Our estimate is in proximity to the previously reported ~ 70 % in literature. The phase states of organic coatings switched between semi-solid and liquid states, depending on the environmental conditions. The semi-solid shell occurring with lower aerosol liquid water content (western United States and at higher altitudes) has a viscosity that was predicted to be 102-1012 Pa s, which resulted in organic mass being decreased due to diffusion limitation. Organic aerosol was primarily liquid where aerosol liquid water was dominant (eastern United States and at the surface), with a viscosity < 102 Pa s. Phase separation while in a liquid phase state, i.e., liquid-liquid phase separation (LLPS), also reduces reactive uptake rates relative to homogeneous internally mixed liquid morphology but was lower than aerosols with a thick viscous organic shell. The sensitivity cases performed with different phase-separation parameterization and dissolution rate of isoprene epoxydiol (IEPOX) into the particle phase in CMAQ can have varying impact on fine particulate matter (PM2.5) organic mass, in terms of bias and error compared to field data collected during the 2013 SOAS. This highlights the need to better constrain the parameters that govern phase state and morphology of SOA, as well as expand mechanistic representation of multiphase chemistry for non-IEPOX SOA formation in models aided by novel experimental insights.

7.
Acc Chem Res ; 53(8): 1415-1426, 2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32648739

RESUMO

ConspectusThe complex array of sources and transformations of organic carbonaceous material that comprises an important fraction of atmospheric fine particle mass, known as organic aerosol, has presented a long running challenge for accurate predictions of its abundance, distribution, and sensitivity to anthropogenic activities. Uncertainties about changes in atmospheric aerosol particle sources and abundance over time translate to uncertainties in their impact on Earth's climate and their response to changes in air quality policy. One limitation in our understanding of organic aerosol has been a lack of comprehensive measurements of its molecular composition and volatility, which can elucidate sources and processes affecting its abundance. Herein we describe advances in the development and application of the Filter Inlet for Gases and Aerosols (FIGAERO) coupled to field-deployable High-Resolution Time-of-Flight Chemical Ionization Mass Spectrometers (HRToF-CIMS). The FIGAERO HRToFCIMS combination broadly probes gas and particulate OA molecular composition by using programmed thermal desorption of particles collected on a Teflon filter with subsequent detection and speciation of desorbed vapors using inherently quantitative selected-ion chemical ionization. The thermal desorption provides a means to obtain quantitative insights into the volatility of particle components and thus the physicochemical nature of the organic material that will govern its evolution in the atmosphere.In this Account, we discuss the design and operation of the FIGAERO, when coupled to the HRToF-CIMS, for quantitative characterization of the molecular-level composition and effective volatility of organic aerosol in the laboratory and field. We provide example insights gleaned from its deployment, which improve our understanding of organic aerosol sources and evolution. Specifically, we connect thermal desorption profiles to the effective equilibrium saturation vapor concentration and enthalpy of vaporization of detected components. We also show how application of the FIGAERO HRToF-CIMS to environmental simulation chamber experiments and the field provide new insights and constraints on the chemical mechanisms governing secondary organic aerosol formation and dynamic evolution. We discuss the associated challenges of thermal decomposition during desorption and calibration of both the volatility axis and signal. We also illustrate how the FIGAERO HRToF-CIMS can provide additional insights into organic aerosol through isothermal evaporation experiments as well as for detection of ultrafine particulate composition. We conclude with a description of future opportunities and needs for its ability to further organic aerosol science.

8.
Artigo em Inglês | MEDLINE | ID: mdl-32584571

RESUMO

The analysis of volatiles is of high relevance for a wide range of applications from environmental air sampling and security screening to potential medical applications. High-resolution mass spectrometry methods offer a particularly wide compound coverage, sensitivity, and selectivity. Online approaches allow direct analysis in real time without the need for sample preparation. For the first time, we systematically compared the analysis of volatile organic compounds with secondary electrospray ionization (SESI) and proton transfer reaction (PTR) high-resolution mass spectrometry. The selected instruments had comparable mass resolving powers with m/Δm ≥ 15000, which is particularly suitable for nontargeted analysis, for example, of exhaled breath. Exhalations from 14 healthy adults were analyzed simultaneously on both instruments. In addition, 97 reference standards from nine chemical classes were analyzed with a liquid evaporation system. Surprisingly, in breath, we found more complementary than overlapping features. A clear mass dependence was observed for each method with the highest number of detected m/z features for SESI in the high mass region (m/z = 150-250) and for PTR in the low mass region (m/z = 50-150). SESI yielded a significantly higher numbers of peaks (828) compared to PTR (491) among a total of 1304 unique breath m/z features. The number of signals observed by both methods was lower than expected (133 features) with 797 unique SESI features and 374 unique PTR features. Hypotheses to explain the observed mass-dependent differences are proposed.

9.
Anal Chem ; 92(14): 9823-9829, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32520529

RESUMO

2,4,6-Trichloroanisole (TCA) contamination of wine determines huge economic losses for the wine industry estimated to amount to several billion dollars yearly. Over 50 years of studies have determined that this problem is often caused by TCA contamination of the cork stopper, which releases TCA into the wine. The human threshold for TCA is extremely low. A wine contaminated by 1-2 ng/L TCA can be perceived as tainted. Contaminations with <0.5 ng/L TCA are commonly considered negligible and are not perceivable. The possibility of prescreening cork stoppers for TCA contamination would be an enormous advantage. Therefore, the demand for a fast, nondestructive method capable of quantifying the TCA contamination in cork stoppers is impelling. Vastly used analytical methods have so far struggled to provide a fast and reliable solution, whereas sensory analysis by trained panelists is expensive and time-consuming. Here we propose a novel approach based on chemical ionization-time-of-flight (CI-TOF) mass spectrometry employing the "Vocus" ion source and ion-molecule reactor. The technique proved capable of nondestructively quantifying TCA contamination in a single cork stopper in 3 s, with a limit of quantification below the perception threshold. A real test on the industrial scale, quantifying TCA contamination in more than 10000 cork stoppers in a few hours is presented, representing the largest data set of TCA analysis on cork stoppers within the literature and proving the possibility to apply the technique in an industrial environment. The correlation with standard methods for releasable TCA quantification is also discussed.


Assuntos
Anisóis/química , Espectrometria de Massas/métodos , Vinho/análise , Contaminação de Alimentos/análise , Humanos , Paladar
10.
ACS Earth Space Chem ; 4(3): 391-402, 2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-32328536

RESUMO

Organic aerosol (OA) constitutes a significant fraction of atmospheric fine particle mass. However, the precursors and chemical processes responsible for a majority of OA are rarely conclusively identified. We use online observations of hundreds of simultaneously measured molecular components obtained from 15 laboratory OA formation experiments with constraints on their effective saturation vapor concentrations to attribute the VOC precursors and subsequent chemical pathways giving rise to the vast majority of OA mass measured in two forested regions. We find that precursors and chemical pathways regulating OA composition and volatility are dynamic over hours to days, with their variations driven by coupled interactions between multiple oxidants. The extent of physical and photochemical aging, and its modulation by NOx, were key to a uniquely comprehensive combined composition-volatility description of OA. Our findings thus provide some of the most complete mechanistic-level guidance to the development of OA descriptions in air quality and Earth system models.

11.
Nat Commun ; 10(1): 4442, 2019 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-31570718

RESUMO

Particles formed in the atmosphere via nucleation provide about half the number of atmospheric cloud condensation nuclei, but in many locations, this process is limited by the growth of the newly formed particles. That growth is often via condensation of organic vapors. Identification of these vapors and their sources is thus fundamental for simulating changes to aerosol-cloud interactions, which are one of the most uncertain aspects of anthropogenic climate forcing. Here we present direct molecular-level observations of a distribution of organic vapors in a forested environment that can explain simultaneously observed atmospheric nanoparticle growth from 3 to 50 nm. Furthermore, the volatility distribution of these vapors is sufficient to explain nanoparticle growth without invoking particle-phase processes. The agreement between observed mass growth, and the growth predicted from the observed mass of condensing vapors in a forested environment thus represents an important step forward in the characterization of atmospheric particle growth.

12.
Proc Natl Acad Sci U S A ; 116(14): 6641-6646, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30886090

RESUMO

Atmospheric oxidation of natural and anthropogenic volatile organic compounds (VOCs) leads to secondary organic aerosol (SOA), which constitutes a major and often dominant component of atmospheric fine particulate matter (PM2.5). Recent work demonstrates that rapid autoxidation of organic peroxy radicals (RO2) formed during VOC oxidation results in highly oxygenated organic molecules (HOM) that efficiently form SOA. As NOx emissions decrease, the chemical regime of the atmosphere changes to one in which RO2 autoxidation becomes increasingly important, potentially increasing PM2.5, while oxidant availability driving RO2 formation rates simultaneously declines, possibly slowing regional PM2.5 formation. Using a suite of in situ aircraft observations and laboratory studies of HOM, together with a detailed molecular mechanism, we show that although autoxidation in an archetypal biogenic VOC system becomes more competitive as NOx decreases, absolute HOM production rates decrease due to oxidant reductions, leading to an overall positive coupling between anthropogenic NOx and localized biogenic SOA from autoxidation. This effect is observed in the Atlanta, Georgia, urban plume where HOM is enhanced in the presence of elevated NO, and predictions for Guangzhou, China, where increasing HOM-RO2 production coincides with increases in NO from 1990 to 2010. These results suggest added benefits to PM2.5 abatement strategies come with NOx emission reductions and have implications for aerosol-climate interactions due to changes in global SOA resulting from NOx interactions since the preindustrial era.

14.
Eur J Cardiothorac Surg ; 55(4): 626-631, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30388210

RESUMO

OBJECTIVES: Smoke generated from electrocautery dissection contains irritating and/or carcinogenic components. The aim of this study was to investigate the effectiveness of a mobile smoke evacuation system (SES) in protecting surgical personnel from these hazardous fumes. METHODS: Standardized cuts with an electrocautery device were performed on fresh porcine tissue, and the generated surgical fume was analysed with and without the additional use of a mobile SES using a real-time proton-transfer-reaction time-of-flight mass spectrometer. Furthermore, 2 different surgical masks were tested to investigate their filter capacity. RESULTS: Several toxic and/or carcinogenic volatile organic compounds including 1,3-butadiene, benzene and furfural were found in concentrations clearly above the limits that were set by the National Institute of Occupational Safety and Health: 1,3-butadiene at 19.06 ± 1.54 ppm (limit: 5 ppm), benzene at 6.21 ± 1.33 ppm (limit: 0.5 ppm) and furfural at 14.34 ± 2.97 ppm (limit: 2 ppm). Although the mobile SES was able to reduce these substances to a certain degree, butadiene and benzene still remained above the permissible exposure limits with concentrations of 14.21 ± 0.07 and 1.16 ± 0.05, respectively. Both surgical masks were unable to reduce the 'inhaled' concentrations of volatile organic compounds. CONCLUSIONS: Although the SES reduced the concentrations of most of the detected volatile organic compounds to a certain amount, especially the carcinogenic substances, butadiene and benzene remained high above exposure limits. According to the abovementioned significant data, further investigation on this topic is imperative, especially when considering that surgical masks were absolutely ineffective in protecting individuals from the toxic smoke and that the cautery was only used for 10 s in this experiment.


Assuntos
Poluição do Ar em Ambientes Fechados/prevenção & controle , Salas Cirúrgicas , Fumaça/efeitos adversos , Filtros de Ar , Poluição do Ar em Ambientes Fechados/efeitos adversos , Poluição do Ar em Ambientes Fechados/análise , Animais , Eletrocoagulação/efeitos adversos , Humanos , Máscaras , Concentração Máxima Permitida , Fumaça/análise , Fumaça/prevenção & controle , Suínos , Compostos Orgânicos Voláteis/efeitos adversos , Compostos Orgânicos Voláteis/análise
15.
Anal Chem ; 90(20): 12011-12018, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30220198

RESUMO

We evaluate the performance of a new chemical ionization source called Vocus, consisting of a discharge reagent-ion source and focusing ion-molecule reactor (FIMR) for use in proton-transfer-reaction time-of-flight mass spectrometry (PTR-TOF) measurements of volatile organic compounds (VOCs) in air. The reagent ion source uses a low-pressure discharge. The FIMR consists of a glass tube with a resistive coating, mounted inside a radio frequency (RF) quadrupole. The axial electric field is used to enhance ion collision energies and limit cluster ion formation. The RF field focuses ions to the central axis of the reactor and improves the detection efficiency of product ions. Ion trajectory calculations demonstrate the mass-dependent focusing of ions and enhancement of the ion collision energy by the RF field, in particular for the lighter ions. Product ion signals are increased by a factor of 10 when the RF field is applied (5000-18 000 cps ppbv-1), improving measurement precision and detection limits while operating at very similar reaction conditions as traditional PTR instruments. Because of the high water mixing ratio in the FIMR, we observe no dependence of the sensitivity on ambient sample humidity. In this work, the Vocus is interfaced to a TOF mass analyzer with a mass resolving power up to 12 000, which allows clear separation of isobaric ions, observed at nearly every nominal mass when measuring ambient air. Measurement response times are determined for a range of ketones with saturation vapor concentrations down to 5 × 104 µg m-3 and compare favorably with previously published results for a PTR-MS instrument.

16.
Proc Natl Acad Sci U S A ; 115(32): 8110-8115, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30037992

RESUMO

Sulfate ([Formula: see text]) and nitrate ([Formula: see text]) account for half of the fine particulate matter mass over the eastern United States. Their wintertime concentrations have changed little in the past decade despite considerable precursor emissions reductions. The reasons for this have remained unclear because detailed observations to constrain the wintertime gas-particle chemical system have been lacking. We use extensive airborne observations over the eastern United States from the 2015 Wintertime Investigation of Transport, Emissions, and Reactivity (WINTER) campaign; ground-based observations; and the GEOS-Chem chemical transport model to determine the controls on winter [Formula: see text] and [Formula: see text] GEOS-Chem reproduces observed [Formula: see text]-[Formula: see text]-[Formula: see text] particulate concentrations (2.45 µg [Formula: see text]) and composition ([Formula: see text]: 47%; [Formula: see text]: 32%; [Formula: see text]: 21%) during WINTER. Only 18% of [Formula: see text] emissions were regionally oxidized to [Formula: see text] during WINTER, limited by low [H2O2] and [OH]. Relatively acidic fine particulates (pH∼1.3) allow 45% of nitrate to partition to the particle phase. Using GEOS-Chem, we examine the impact of the 58% decrease in winter [Formula: see text] emissions from 2007 to 2015 and find that the H2O2 limitation on [Formula: see text] oxidation weakened, which increased the fraction of [Formula: see text] emissions oxidizing to [Formula: see text] Simultaneously, NOx emissions decreased by 35%, but the modeled [Formula: see text] particle fraction increased as fine particle acidity decreased. These feedbacks resulted in a 40% decrease of modeled [[Formula: see text]] and no change in [[Formula: see text]], as observed. Wintertime [[Formula: see text]] and [[Formula: see text]] are expected to change slowly between 2015 and 2023, unless [Formula: see text] and NOx emissions decrease faster in the future than in the recent past.

17.
Proc Natl Acad Sci U S A ; 115(9): 2038-2043, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29440409

RESUMO

The chemical complexity of atmospheric organic aerosol (OA) has caused substantial uncertainties in understanding its origins and environmental impacts. Here, we provide constraints on OA origins through compositional characterization with molecular-level details. Our results suggest that secondary OA (SOA) from monoterpene oxidation accounts for approximately half of summertime fine OA in Centreville, AL, a forested area in the southeastern United States influenced by anthropogenic pollution. We find that different chemical processes involving nitrogen oxides, during days and nights, play a central role in determining the mass of monoterpene SOA produced. These findings elucidate the strong anthropogenic-biogenic interaction affecting ambient aerosol in the southeastern United States and point out the importance of reducing anthropogenic emissions, especially under a changing climate, where biogenic emissions will likely keep increasing.


Assuntos
Aerossóis/química , Poluentes Atmosféricos/química , Monoterpenos/química , Estações do Ano , Sudeste dos Estados Unidos , Fatores de Tempo
18.
J Geophys Res Atmos ; 123(19): 11225-11237, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30997299

RESUMO

We present airborne observations of gaseous reactive halogen species (HCl, Cl2, ClNO2, Br2,BrNO2, and BrCl), sulfur dioxide (SO2), and nonrefractory fine particulate chloride (pCl) and sulfate(pSO4) in power plant exhaust. Measurements were conducted during the Wintertime INvestigation of Transport, Emissions, and Reactivity campaign in February-March of 2015 aboard the NCAR-NSF C-130 aircraft. Fifty air mass encounters were identified in which SO2 levels were elevated ~5 ppb above ambient background levels and in proximity to operational power plants. Each encounter was attributed to one or more potential emission sources using a simple wind trajectory analysis. In case studies, we compare measured emission ratios to those reported in the 2011 National Emissions Inventory and present evidence of the conversion of HCl emitted from power plants to ClNO2. Taking into account possible chemical conversion downwind, there was general agreement between the observed and reported HCl: SO2 emission ratios. Reactive bromine species (Br2, BrNO2, and/or BrCl) were detected in the exhaust of some coal-fired power plants, likely related to the absence of wet flue gas desulfurization emission control technology. Levels of bromine species enhanced in some encounters exceeded those expected assuming all of the native bromide in coal was released to the atmosphere, though there was no reported use of bromide salts (as a way to reduce mercury emissions) during Wintertime INvestigation of Transport, Emissions, and Reactivity observations. These measurements represent the first ever in-flight observations of reactive gaseous chlorine and bromine containing compounds present in coal-fired power plant exhaust.

19.
Environ Sci Technol ; 51(9): 4978-4987, 2017 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-28388039

RESUMO

We report chamber measurements of secondary organic aerosol (SOA) formation from isoprene photochemical oxidation, in which radical concentrations were systematically varied and the molecular composition of semi- to low-volatility gases and SOA were measured online. Using a detailed chemical kinetics box model, we find that to explain the behavior of low-volatility products and SOA mass yields relative to input H2O2 concentrations, the second-generation dihydroxy hydroperoxy peroxy radical (C5H11O6·) must undergo an intramolecular H-shift with a net forward rate constant of order 0.1 s-1 or higher. This finding is consistent with quantum chemical calculations that suggest a net forward rate constant of 0.3-0.9 s-1. Furthermore, these calculations suggest that the dominant product of this isomerization is a dihydroxy hydroperoxy epoxide (C5H10O5), which is expected to have a saturation vapor pressure ∼2 orders of magnitude higher, as determined by group-contribution calculations, than the dihydroxy dihydroperoxide, ISOP(OOH)2(C5H12O6), a major product of the peroxy radical reacting with HO2. These results provide strong constraints on the likely volatility distribution of isoprene oxidation products under atmospheric conditions and, thus, on the importance of nonreactive gas-particle partitioning of isoprene oxidation products as an SOA source.


Assuntos
Aerossóis/química , Peróxido de Hidrogênio , Compostos de Epóxi/química , Oxirredução , Volatilização
20.
Environ Sci Technol ; 50(18): 9872-80, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27548285

RESUMO

With a large global emission rate and high reactivity, isoprene has a profound effect upon atmospheric chemistry and composition. The atmospheric pathways by which isoprene converts to secondary organic aerosol (SOA) and how anthropogenic pollutants such as nitrogen oxides and sulfur affect this process are subjects of intense research because particles affect Earth's climate and local air quality. In the absence of both nitrogen oxides and reactive aqueous seed particles, we measure SOA mass yields from isoprene photochemical oxidation of up to 15%, which are factors of 2 or more higher than those typically used in coupled chemistry climate models. SOA yield is initially constant with the addition of increasing amounts of nitric oxide (NO) but then sharply decreases for input concentrations above 50 ppbv. Online measurements of aerosol molecular composition show that the fate of second-generation RO2 radicals is key to understanding the efficient SOA formation and the NOx-dependent yields described here and in the literature. These insights allow for improved quantitative estimates of SOA formation in the preindustrial atmosphere and in biogenic-rich regions with limited anthropogenic impacts and suggest that a more-complex representation of NOx-dependent SOA yields may be important in models.


Assuntos
Aerossóis , Atmosfera/química , Poluentes Atmosféricos , Óxido Nítrico/química , Óxidos de Nitrogênio , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA