Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38732390

RESUMO

Phenotyping yam (Dioscorea spp.) germplasm for resistance to parasitic nematodes is hampered by the lack of an efficient screening method. In this study, we developed a new method using rooted yam vine cuttings and yam plantlets generated from semi-autotrophic hydroponics (SAHs) propagation for phenotyping yam genotypes for nematode resistance. The method was evaluated using 26 genotypes of D. rotundata for their reaction to Scutellonema bradys and four root-knot nematode species, Meloidogyne arenaria, M. enterolobii, M. incognita, and M. javanica. Yam plantlets established in nursery bags filled with steam-sterilized soil were used for screening against single nematode species. Plants were inoculated four weeks after planting and assessed for nematode damage eight weeks later. A severity rating scale was used to classify genotypes as resistant, tolerant, or susceptible determine based on the nematode feeding damage on tubers and the rate of nematode multiplication in the roots of inoculated plants. The results demonstrated putative resistance and tolerance against S. bradys in 58% of the genotypes and 88%, 65%, 65%, and 58% against M. arenaria, M. javanica, M. incognita, and M. enterolobii, respectively. The method is rapid, flexible, and seasonally independent, permitting year-round screening under controlled conditions. This method increases the throughput and speed of phenotyping and improves the selection process.

2.
Nat Commun ; 13(1): 2001, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35422045

RESUMO

The nutrient-rich tubers of the greater yam, Dioscorea alata L., provide food and income security for millions of people around the world. Despite its global importance, however, greater yam remains an orphan crop. Here, we address this resource gap by presenting a highly contiguous chromosome-scale genome assembly of D. alata combined with a dense genetic map derived from African breeding populations. The genome sequence reveals an ancient allotetraploidization in the Dioscorea lineage, followed by extensive genome-wide reorganization. Using the genomic tools, we find quantitative trait loci for resistance to anthracnose, a damaging fungal pathogen of yam, and several tuber quality traits. Genomic analysis of breeding lines reveals both extensive inbreeding as well as regions of extensive heterozygosity that may represent interspecific introgression during domestication. These tools and insights will enable yam breeders to unlock the potential of this staple crop and take full advantage of its adaptability to varied environments.


Assuntos
Dioscorea , Cromossomos , Dioscorea/genética , Humanos , Melhoramento Vegetal , Tubérculos , Locos de Características Quantitativas/genética
3.
Genes (Basel) ; 13(2)2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35205389

RESUMO

Anthracnose disease caused by a fungus Colletotrichum gloeosporioides is the primary cause of yield loss in water yam (Dioscorea alata), the widely cultivated species of yam. Resistance to yam anthracnose disease (YAD) is a prime target in breeding initiatives to develop durable-resistant cultivars for sustainable management of the disease in water yam cultivation. This study aimed at tagging quantitative trait loci (QTL) for anthracnose disease resistance in a bi-parental mapping population of D. alata. Parent genotypes and their recombinant progenies were genotyped using the Genotyping by Sequencing (GBS) platform and phenotyped in two crop cycles for two years. A high-density genetic linkage map was built with 3184 polymorphic Single Nucleotide Polymorphism (NSP) markers well distributed across the genome, covering 1460.94 cM total length. On average, 163 SNP markers were mapped per chromosome with 0.58 genetic distances between SNPs. Four QTL regions related to yam anthracnose disease resistance were identified on three chromosomes. The proportion of phenotypic variance explained by these QTLs ranged from 29.54 to 39.40%. The QTL regions identified showed genes that code for known plant defense responses such as GDSL-like Lipase/Acylhydrolase, Protein kinase domain, and F-box protein. The results from the present study provide valuable insight into the genetic architecture of anthracnose resistance in water yam. The candidate markers identified herewith form a relevant resource to apply marker-assisted selection as an alternative to a conventional labor-intensive screening for anthracnose resistance in water yam.


Assuntos
Dioscorea , Locos de Características Quantitativas , Dioscorea/genética , Resistência à Doença/genética , Melhoramento Vegetal , Locos de Características Quantitativas/genética , Água
4.
Outlook Agric ; 49(3): 215-224, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32801396

RESUMO

Lack of good-quality planting materials has been identified as the most severe problem militating against increased agricultural productivity in sub-Saharan Africa (SSA) and beyond. However, investment of research efforts and resources in addressing this menace will only be feasible and worthwhile if attendant economic gains are considerable. As a way of investigating the economic viability of yam investment, this research has been initiated to address problems confronting yam productivity in eight countries of SSA and beyond: Nigeria, Ghana, Benin, Togo, Côte d'Ivoire, Papua New Guinea, Jamaica, and Columbia. Research options developed were to be deployed and disseminated. Key technologies include the adaptive yam minisett technique (AYMT), varieties adapted to low soil fertility and drought, nematode-resistant cultivars (NRC), and crop management and postharvest practices (CMPP). This article aims at estimating the potential economic returns, the expected number of beneficiaries, and poverty reduction consequent to the adoption of technology options. Estimates show that the new land area that will be covered by the technologies in the eight countries will range between 770,000 ha and 1,000,000 ha with the highest quota accounted for by AYMT. The net present value will range between US$584 and US$1392 million and was highest for the NRC. The CMPP had the lowest benefit-cost ratio of 7.74. About 1,049,000 people would be moved out of poverty by these technologies by 2037 in the region. These technologies are less responsive to changes in cost than that in adoption rate. Therefore, the realization of the potential economic gains depends on the rate and extent of adoption of these technologies. Giving the knowledge-intensive nature of some of these interventions, capacity building of potential adopters will be critical to increasing the sustainability of the yam sector, thereby enhancing food security and reducing poverty.

5.
PLoS One ; 13(10): e0197717, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30303959

RESUMO

Water yam (Dioscorea alata L.) is one of the most important food yams with wide geographical distribution in the tropics. One of the major constraints to water yam production is anthracnose disease caused by a fungus, Colletotrichum gloeosporioides (Penz.). There are no economically feasible solutions as chemical sprays or cultural practices, such as crop rotation are seldom convenient for smallholder farmers for sustainable control of the disease. Breeding for development of durable genetic resistant varieties is known to offer lasting solution to control endemic disease threats to crop production. However, breeding for resistance to anthracnose has been slow considering the biological constraints related to the heterozygous and vegetative propagation of the crop. The development of saturated linkage maps with high marker density, such as SSRs, followed by identification of QTLs can accelerate the speed and precision of resistance breeding in water yam. In a previous study, a total of 1,152 EST-SSRs were developed from >40,000 EST-sequences generated from two D. alata genotypes. A set of 380 EST-SSRs were validated as polymorphic when tested on two diverse parents targeted for anthracnose disease and were used to generate a saturated linkage map. Majority of the SSRs (60.2%) showed Mendelian segregation pattern and had no effect on the construction of linkage map. All 380 EST-SSRs were mapped into 20 linkage groups, and covered a total length of 3229.5 cM. Majority of the markers were mapped on linkage group 1 (LG 1) comprising of 97 EST-SSRs. This is the first genetic linkage map of water yam constructed using EST-SSRs. QTL localization was based on phenotypic data collected over a 3-year period of inoculating the mapping population with the most virulent strain of C. gloeosporioides from West Africa. Based on threshold LOD scores, one QTL was consistently observed on LG 14 in all the three years and average score data. This QTL was found at position interval of 71.1-84.8 cM explaining 68.5% of the total phenotypic variation in the average score data. The high marker density allowed identification of QTLs and association for anthracnose disease, which could be validated in other mapping populations and used in marker-assisted breeding in D. alata improvement programmes.


Assuntos
Dioscorea/genética , Ligação Genética , Doenças das Plantas/genética , Locos de Características Quantitativas , Mapeamento Cromossômico , Colletotrichum/fisiologia , Dioscorea/microbiologia , Resistência à Doença , Etiquetas de Sequências Expressas , Genoma de Planta , Repetições de Microssatélites , Melhoramento Vegetal , Doenças das Plantas/microbiologia
6.
Food Chem ; 259: 130-138, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29680035

RESUMO

Screening carotenoids of elite accessions of yam (Dioscorea spp.) used in the global yam breeding program has been conducted to quantitatively determine the carotenoid composition of the crop. Comparisons to previous data reporting cerotenoid levels in yam has been made, in order to deduce greater perspectives across multiple studies. Characterisation of complex species and accession -specific profiles have shown a rich base of diversity that can inform breeding strategies. Key findings include; (i) the identification of accessions rich in ß-carotene which can aid provitamin A biofortification, (ii) Data disputing the commonly held belief that yellow Guinea yam (D. cayennensis) has higher ß-carotene content than that of white Guinea yam (D. rotundata), and (iii) the tentative identification of C25-epoxy-apocarotenoid persicaxanthin with potential implications for tuber dormancy.


Assuntos
Carotenoides/análise , Dioscorea/química , Compostos de Epóxi/análise , Tubérculos/química , beta Caroteno/análise
7.
Metabolomics ; 13(11): 144, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29104519

RESUMO

INTRODUCTION: Ninety-seven percent of yam (Dioscorea spp.) production takes place in low income food deficit countries (LIFDCs) and the crop provides 200 calories a day to approximately 300 million people. Therefore, yams are vital for food security. Yams have high-yield potential and high market value potential yet current breeding of yam is hindered by a lack of genomic information and genetic resources. New tools are needed to modernise breeding strategies and unlock the potential of yam to improve livelihood in LIFDCs. OBJECTIVES: Metabolomic screening has been undertaken on a diverse panel of Dioscorea accessions to assess the utility of the approach for advancing breeding strategies in this understudied crop. METHODS: Polar and lipophilic extracts from tubers of accessions from the global yam breeding program have been comprehensively profiled via gas chromatography-mass spectrometry. RESULTS: A visual pathway representation of the measured yam tuber metabolome has been delivered as a resource for biochemical evaluation of yam germplasm. Over 200 compounds were routinely measured in tubers, providing a major advance for the chemo-typing of this crop. Core biochemical redundancy concealed trends that were only elucidated following detailed mining of global metabolomics data. Combined analysis on leaf and tuber material identified a subset of metabolites which allow accurate species classification and highlighted the potential of predicting tuber composition from leaf profiles. Metabolic variation was accession-specific and often localised to compound classes, which will aid trait-targeting for metabolite markers. CONCLUSIONS: Metabolomics provides a standalone platform with potential to deliver near-future crop gains for yam. The approach compliments the genetic advancements currently underway and integration with other '-omics' studies will deliver a significant advancement to yam breeding strategies.

8.
BMC Biol ; 15(1): 86, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28927400

RESUMO

BACKGROUND: Root and tuber crops are a major food source in tropical Africa. Among these crops are several species in the monocotyledonous genus Dioscorea collectively known as yam, a staple tuber crop that contributes enormously to the subsistence and socio-cultural lives of millions of people, principally in West and Central Africa. Yam cultivation is constrained by several factors, and yam can be considered a neglected "orphan" crop that would benefit from crop improvement efforts. However, the lack of genetic and genomic tools has impeded the improvement of this staple crop. RESULTS: To accelerate marker-assisted breeding of yam, we performed genome analysis of white Guinea yam (Dioscorea rotundata) and assembled a 594-Mb genome, 76.4% of which was distributed among 21 linkage groups. In total, we predicted 26,198 genes. Phylogenetic analyses with 2381 conserved genes revealed that Dioscorea is a unique lineage of monocotyledons distinct from the Poales (rice), Arecales (palm), and Zingiberales (banana). The entire Dioscorea genus is characterized by the occurrence of separate male and female plants (dioecy), a feature that has limited efficient yam breeding. To infer the genetics of sex determination, we performed whole-genome resequencing of bulked segregants (quantitative trait locus sequencing [QTL-seq]) in F1 progeny segregating for male and female plants and identified a genomic region associated with female heterogametic (male = ZZ, female = ZW) sex determination. We further delineated the W locus and used it to develop a molecular marker for sex identification of Guinea yam plants at the seedling stage. CONCLUSIONS: Guinea yam belongs to a unique and highly differentiated clade of monocotyledons. The genome analyses and sex-linked marker development performed in this study should greatly accelerate marker-assisted breeding of Guinea yam. In addition, our QTL-seq approach can be utilized in genetic studies of other outcrossing crops and organisms with highly heterozygous genomes. Genomic analysis of orphan crops such as yam promotes efforts to improve food security and the sustainability of tropical agriculture.


Assuntos
Dioscorea/genética , Genoma de Planta , Biomarcadores/metabolismo , Produtos Agrícolas/genética , Melhoramento Vegetal , Locos de Características Quantitativas , Sequenciamento Completo do Genoma
9.
Plant Dis ; 101(1): 209-216, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30682296

RESUMO

Anthracnose, caused by Colletotrichum gloeosporioides, is one of the major constraints limiting water yam (Dioscorea alata) production in the tropics. In this region, yam anthracnose control is mostly achieved by the deployment of moderately resistant yam genotypes. Therefore, screening for new sources of anthracnose resistance is an important aspect of yam research in the tropics. The reliability and applicability of different yam anthracnose rating parameters has not been fully examined. Disease severity on detached leaves in the laboratory and leaf severity, lesion size, and spore production on whole plants in the greenhouse were used to screen an F1 yam population and correlate screening results with field evaluations. Anthracnose lesion size had the smallest predicted residual means but whole-plant severity and detached-leaf severity had the best variance homogeneity and relatively small predicted residual means. The concordance correlation coefficient (rc) and κ statistic were used to determine the agreement between anthracnose rating parameters and field evaluations. Detached-leaf (rc = 0.95, κ = 0.81) and whole-plant (rc = 0.96, κ = 0.86) evaluations had high positive agreement with field evaluation but spore production (κ = 0.69) and lesion size (κ = 0.57) had moderate positive agreement. These results suggest that all the evaluated rating parameters can be used to successfully screen yam germplasm for anthracnose resistance but lesion size and spore production data may need to be transformed.

10.
Virus Res ; 186: 144-54, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24457074

RESUMO

Yam (Dioscorea spp.) is an important vegetatively-propagated staple crop in West Africa. Viruses are pervasive in yam worldwide, decreasing growth and yield, as well as hindering the international movement of germplasm. Badnaviruses have been reported to be the most prevalent in yam, and genomes of some other badnaviruses are known to be integrated in their host plant species. However, it was not clear if a similar scenario occurs in Dioscorea yam. This study was conducted to verify the prevalence of badnaviruses, and determine if badnavirus genomes are integrated in the yam genome. Leaf samples (n=58) representing eight species of yam from global yam collections kept at CIRAD, France, and 127 samples of D. rotundata breeding lines (n=112) and landraces (n=15) at IITA, Nigeria, were screened using generic badnavirus PCR primers. Positive amplification of an expected ca. 579bp fragment, corresponding to a partial RT-RNaseH region, was detected in 47 (81%) of 58 samples analysed from CIRAD collections, and 100% of the 127 IITA D. rotundata samples. All the D. cayenensis and D. rotundata samples from the CIRAD and IITA collections tested PCR-positive, and sequencing of a selection of the PCR products confirmed they were typical of the genus Badnavirus. A comparison of serological and nucleic acid techniques was used to investigate whether the PCR-positives were sequences amplified from badnavirus particles or putative endogenous badnavirus sequences in the yam genome. Protein A sandwich-enzyme-linked immunosorbent assay (PAS-ELISA) with badnavirus polyclonal antisera detected cross-reacting viral particles in only 60% (92 of 153) of the CIRAD collection samples analysed, in contrast to the aforementioned 81% by PCR. Immunosorbent electron microscopy (ISEM) of virus preparations of a select set of 16 samples, representing different combinations of positive and negative PCR and PAS-ELISA results, identified bacilliform particles in 11 of these samples. Three PCR-positive yam samples from Burkina Faso (cv. Pilimpikou) were identified in which no viral particles were detected by either PAS-ELISA or ISEM. Southern hybridisation results using a yam badnavirus RT-RNaseH sequence (Gn155Dr) as probe, supported a lack of badnavirus particles in the cv. Pilimpikou and identified their equivalent sequences to be of plant genome origin. Probe Gn155Dr, however, hybridised to viral particles and plant genomic DNA in three D. rotundata samples from Guinea. These results represent the first data demonstrating the presence of integrated sequences of badnaviruses in yam. The implications of this for virus-indexing, breeding and multiplication of seed yams are discussed.


Assuntos
Badnavirus/genética , DNA Viral/genética , Dioscorea/virologia , Genoma de Planta , Genoma Viral , Filogenia , Doenças das Plantas/virologia , África Ocidental , Badnavirus/classificação , Badnavirus/isolamento & purificação , Dioscorea/genética , Evolução Molecular , Variação Genética , Interações Hospedeiro-Patógeno , Filogeografia , Doenças das Plantas/genética , Folhas de Planta/genética , Folhas de Planta/virologia , Integração Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA