Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38792035

RESUMO

The crystal structure of 4-methylcatechol (4MEC) has, to date, never been solved, despite its very simple chemical formula C7O2H8 and the many possible applications envisaged for this molecule. In this work, this gap is filled and the structure of 4MEC is obtained by combining X-ray powder diffraction and first principle calculations to carefully locate hydrogen atoms. Two molecules are present in the asymmetric unit. Hirshfeld analysis confirmed the reliability of the solved structure, since the two molecules show rather different environments and H-bond interactions of different directionality and strength. The packing is characterised by a peculiar hydrogen bond network with hydroxyl nests formed by two adjacent octagonal frameworks. It is noteworthy that the observed short contacts suggest strong inter-molecular interactions, further confirmed by strong inter-crystalline aggregation observed by microscopic images, indicating the growth, in many crystallization attempts, of single aggregates taller than half a centimetre and, often, with spherical shapes. These peculiarities are induced by the presence of methyl group in 4MEC, since the parent compound catechol, despite its chemical similarity, shows a standard layered packing alternating hydrophobic and polar layers. Finally, the complexity and peculiarity of the packing and crystal growth features explain why a single crystal could not be obtained for a standard structural analysis.

2.
Sci Rep ; 14(1): 1834, 2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38246926

RESUMO

Salicylic and acetylsalicylic acids and ethacridine have complementary bioactive properties. They can be combined to obtain double-drug multicomponent crystals. Their reactivity in different environments was explored to obtain the possible compounds, stable at different hydration degrees. Solution, liquid-assisted grinding, and dry preparation approaches were applied to the couples of reactants in different stoichiometric ratios. Four compounds were obtained, and three out of them were stable and reproducible enough to determine their structures using SCXRD or PXRD methods. When coupled to ethacridine, salicylic acid gave two stable structures (1 and 3, both showing 1:1 ratio but different hydration degree) and a metastable one (5), while acetylsalicylic acid only one structure from solution (2 in 1:1 ratio), while LAG caused hydrolysis and formation of the same compound obtained by LAG of ethacridine with salicylic acid. While solution precipitation gave dihydrated (1) or monohydrated (2) structures with low yields, LAG of salicylic acid and ethacridine allowed obtaining an anhydrous salt complex (3) with a yield close to 1. The structures obtained by solution crystallizations maximize π(acridine)-π(acridine) contacts with a less compact packing, while the LAG structure is more compact with a packing driven by hydrogen bonds. For all compounds, NMR, ATR-FTIR, and Hirshfeld surface analysis and energy framework calculations were performed.

3.
Dalton Trans ; 53(6): 2833-2847, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38230705

RESUMO

Nanocrystalline powders of monometallic and bimetallic imidazolates of Co, Zn and Ag were produced by a reaction carried out in water. The powders were characterized by powder X-ray diffraction and the crystal structures of the new compounds Ag2ZnIm4 and Ag2CoIm4 (Im = imidazolate) were solved. Heterometallic Co/Zn imidazolates showed the known Zn-zni crystal structure while Ag/Zn and Ag/Co systems were isostructural to the copper analogs. The powders were further characterized by EDX, UV-Vis and FTIR ATR spectroscopy in the solid state. The catalytic experiments indicated that out of the studied heterometallic compounds only Ag2Co(Im)4 exhibits some catalytic activity in the oxidation reaction of 1-phenylethanol with tert-butylhydroperoxide at elevated temperatures.

4.
J Appl Crystallogr ; 55(Pt 4): 837-850, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35974739

RESUMO

In materials and earth science, but also in chemistry, pharmaceutics and engineering, the quantification of elements and crystal phases in solid samples is often essential for a full characterization of materials. The most frequently used techniques for this purpose are X-ray fluorescence (XRF) for elemental analysis and X-ray powder diffraction (XRPD) for phase analysis. In both methods, relations between signal and quantity do exist but they are expressed in terms of complex equations including many parameters related to both sample and instruments, and the dependence on the active element or phase amounts to be determined is convoluted among those parameters. Often real-life samples hold relations not suitable for a direct quantification and, therefore, estimations based only on the values of the relative intensities are affected by large errors. Preferred orientation (PO) and microabsorption (MA) in XRPD cannot usually be avoided, and traditional corrections in Rietveld refinement, such as the Brindley MA correction, are not able, in general, to restore the correct phase quantification. In this work, a multivariate approach, where principal component analysis is exploited alone or combined with regression methods, is used on XRPD profiles collected on ad hoc designed mixtures to face and overcome the typical problems of traditional approaches. Moreover, the partial or no known crystal structure (PONKCS) method was tested on XRPD data, as an example of a hybrid approach between Rietveld and multivariate approaches, to correct for the MA effect. Particular attention is given to the comparison and selection of both method and pre-process, the two key steps for good performance when applying multivariate methods to obtain reliable quantitative estimations from XRPD data, especially when MA and PO are present. A similar approach was tested on XRF data to deal with matrix effects and compared with the more classical fundamental-parameter approach. Finally, useful indications to overcome the difficulties of the general user in managing the parameters for a successful application of multivariate approaches for XRPD and XRF data analysis are given.

5.
Data Brief ; 39: 107503, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34761084

RESUMO

Mechanical properties such as the Young modulus, shear modulus and Poisson's coefficient are very important to define different materials applications, for basic research and for quality control procedures. Impulse excitation technique (IET) is a non-destructive, easy and fast method for characterization of elastic and acoustic properties of materials. The technique consists in sending a mechanical impulse in a sample and measuring the output sound wave. Commercial instruments are widely spread in metal industry, but they are not diffused in academic research centres. Such instruments can be easily self-built at low cost, allowing a much wider diffusion and exploitation in many fields involving materials characterization, since they guarantee high precision and high data reproducibility. For a proper acoustic characterization, necessary to obtain reliable mechanical data, a calibration of the instrument must be performed, for a proper association of the acoustic response to the features of each specific material. In this data article, a data set of impulses, collected on different materials by a self-built instrument for IET, named IETeasy, is provided for mechanical properties characterization by a self-built IET tool, and multivariate statistical analysis purposes. The aim is double in the short term: on one hand, providing a verified data set useful to develop, test and verify methods of analysis and tailor the IETeasy instrument on the needs of each specific user; on the other hand, giving a benchmark for any one designing, building and testing his IET home-made instrument. In the long term, since the data base is open, any contribution consisting in data collected by similar self-made or commercial instruments can be added to the data base, with the aim of building a large collection of data, useful for automatic recognition of sound outputs by machine learning or other multivariate or monovariate data analysis approaches, and for instrument performance comparison and alignment.

6.
Int J Mol Sci ; 22(9)2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-34066374

RESUMO

Low-cost, environmentally friendly and easily applicable coating for Mg alloys, able to resist in real world conditions, are studied. Coatings already used for other metals (aluminum, steel) and never tested on Mg alloy for its different surface and reactivity were deposited on AM60 magnesium alloys to facilitate their technological applications, also in presence of chemically aggressive conditions. A biobased PA11 powder coating was compared to synthetic silicon-based and polyester coatings, producing lab scale samples, probed by drop deposition tests and dipping in increasingly aggressive, salty, basic and acid solutions, at RT and at higher temperatures. Coatings were analyzed by SEM/EDX to assess their morphology and compositions, by optical and IR-ATR microscopy analyses, before and after the drop tests. Migration analyses from the samples were performed by immersion tests using food simulants followed by ICP-OES analysis of the recovered simulant to explore applications also in the food contact field. A 30 µm thick white lacquer and a 120 µm PA11 coating resulted the best solutions. The thinner siliconic and lacquer coatings, appearing brittle and thin in the SEM analysis, failed some drop and/or dipping test, with damages especially at the edges. The larger thickness is thus the unique solution for edgy or pointy samples. Finally, coffee cups in AM60 alloy were produced, as real word prototypes, with the best performing coatings and tested for both migration by dipping, simulating also real world aging (2 h in acetic acid at 70° and 24 h in hot coffee at 60 °C): PA11 resulted stable in all the tests and no migration of toxic metals was observed, resulting a promising candidate for many real world application in chemically aggressive environments and also food and beverage related applications.


Assuntos
Ligas/química , Ligas/economia , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/economia , Custos e Análise de Custo , Meio Ambiente , Alimentos , Magnésio/economia , Magnésio/química , Espectroscopia de Infravermelho com Transformada de Fourier
7.
Data Brief ; 36: 107043, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33997195

RESUMO

Micro-absorption (MA) and/or preferred orientations (PO) are two among the major problems affecting quantitative phase analysis (QPA) by X-ray Powder Diffraction Data (XRPD) in industrial samples such as minerals and ores, additives, cements, friction materials, coal combustion by-products. Typically XRPD data are coupled to elemental analysis by X-ray Fluorescence (XRF) to facilitate phase recognition and quantification when elements heavier than sodium are present. Graphite and urea are typical examples of large production industrial commodities showing such analytical problems. The present article provides a recipe to produce sets of data of increasing difficulty to test the performances of different approaches and/or software's for QPA by XRPD in graphite, zinc acetate and urea containing samples. Graphite, due to its platelet morphology, can exhibit orientation and was chosen because it is possible to control its PO degree by sieving. Simplex-centroid design augmented was used for the design of the experiments to select the mixtures with the more possible homogeneous exploration of the ternary experimental domains, from pure phase to equal-weighted mixtures. The different data sets collected on the four experimental domains by XRF and XRPD are provided and stored as a repository on Mendeley Data. Using the same approach, additional data sets sets with different composition and/or experimental setup can be added by us or any other contributor with the same DoE approach to create a wide open access data set of standardized X-ray powder diffraction and X-ray fluorescence data.

8.
HardwareX ; 10: e00231, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35607698

RESUMO

In the past twenty years, impulse excitation technique (IET) has become a widely diffused non-destructive technique in metal industry field. This success resides in its capability to determine with high precision and accuracy some elastic properties of materials, such as Young's modulus, shear modulus and Poisson's ratio. The technique, which is very fast and non-destructive, consists in exciting a sample by a mechanical input and registering the acoustic output that, once analyzed by Fast Fourier-Transformation (FFT), provides the resonant frequencies of the sample, with a fast data analysis procedure. The approach is thus very easy to be applied to most materials and cost and time effective. Despite these many advantages, IET is still an under exploited technique in academic research centres, that mainly rely on traditional destructive methods for the evaluation of such properties, for instance by the measurement of strain-stress curves. Commercial IET instruments, similarly to traditional ones, have costs spanning from many hundreds to thousands of dollars, limiting their diffusion in academic world but also in small companies with limited R&D or quality control expenses. Non-professional instruments can also give very precise results and can be successfully used in basic research and in quality control even if not certified as commercial ones. Moreover they can be easily customized according to specific user needs and sample features. Since no examples of low cost IET designs can still be found in the scientific literature, we fill the gap in this paper, giving instructions for a self-assembled instrument for IET analysis, with a cost in the range of 70-85 USD. Moreover, the collected calibration data are analyzed to prove that the instrument can be used for other purposes than the common elastic properties determination, but also for a fast and cheap material characterization exploiting a multivariate analysis approach. Calibration results show that IETeasy can be used in both academic and industrial field for quality control purposes as a low-cost, fast and efficient alternative to tensometers. Principal component analysis, applied in this paper for the first time to IET data analysis, was able to distinguish and classify steel from Al or Cu alloys from polymers, but also different steel grades, demonstrating its potential in massive and eventually automatic IET data analysis. Calculated mechanical properties fitted with good approximation the ranges expected for each sample.

9.
Int J Mol Sci ; 21(3)2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-32012889

RESUMO

Composite lightweight materials for X-ray shielding applications were studied anddeveloped with the goal of replacing traditional screens made of lead and steel, with innovativematerials with similar shielding properties, but lighter, more easily formed and workable, with lowerimpact on the environment and reduced toxicity for human health. New epoxy-based compositesadditivated with barium sulfate and bismuth oxide were designed through simulations performedwith software based on Geant4. Then, they were prepared and characterized using differenttechniques starting from digital radiography in order to test the radiopacity of the composites,in comparison with traditional materials. The lower environmental impact and toxicity of theseinnovative screens were quantified by Life Cycle Assessment (LCA) calculation based on the ecoinventdatabase, within the openLCA framework. Optimized mixtures are (i) 20% epoxy/60% bismuthoxide/20% barite, which guarantees the best performance in X-ray shielding, largely overcomingsteel, but higher in costs and a weight reduction of circa 60%; (ii) 20% epoxy/40% bismuth oxide/40%barite which has slightly lower performances in shielding, but it is lighter and cheaper than thefirst one and (iii) the 20% epoxy/20% bismuth oxide/60% barite which is the cheapest material, stillmaintaining the X-ray shielding of steel. Depending on the cost/efficiency request of the specificapplication (industrial ra.


Assuntos
Sulfato de Bário/química , Bismuto/química , Resinas Epóxi/síntese química , Resinas Epóxi/química , Dureza , Peso Molecular , Intensificação de Imagem Radiográfica , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA