Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 18017, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36289439

RESUMO

A field spray drift experiment using florpyrauxifen-benzyl was conducted to measure drift from commercial ground and aerial applications, evaluate soybean [Glycine max (L.) Merr.] impacts, and compare to United States Environmental Protection Agency (US EPA) drift models. Collected field data were consistent with US EPA model predictions. Generally, with both systems applying a Coarse spray in a 13-kph average wind speed, the aerial application had a 5.0- to 8.6-fold increase in drift compared to the ground application, and subsequently, a 1.7- to 3.6-fold increase in downwind soybean injury. Soybean reproductive structures were severely reduced following herbicide exposure, potentially negatively impacting pollinator foraging sources. Approximately a 25% reduction of reproductive structures up to 30.5-m downwind and nearly a 100% reduction at 61-m downwind were observed for ground and aerial applications, respectively. Aerial applications would require three to five swath width adjustments upwind to reduce drift potential similar to ground applications.


Assuntos
Herbicidas , Praguicidas , Estados Unidos , Monitoramento Ambiental , Vento , United States Environmental Protection Agency , Agricultura , Praguicidas/análise
2.
J Econ Entomol ; 115(5): 1693-1702, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36099406

RESUMO

Foliar-applied insecticide treatments may be necessary to manage thrips in cotton (Gossypium hirsutum L.) under severe infestations or when at-planting insecticide seed treatments do not provide satisfactory protection. The most common foliar-applied insecticide is acephate. Field observations in Tennessee suggest that the performance of acephate has declined. Thus, the first objective was to perform leaf-dip bioassays to assess if tobacco thrips, Frankliniella fusca (Hinds) (Thysanoptera: Thripidae), in cotton production regions have evolved resistance to foliar-applied insecticides. A second objective was to assess the performance of commonly applied foliar insecticides for managing thrips in standardized field trials in Arkansas, Tennessee, Mississippi, and Texas. For both objectives, several insecticides were evaluated including acephate, dicrotophos, dimethoate, lambda-cyhalothrin, imidacloprid, and spinetoram. Field trials and bioassays were completed from 2018 to 2021. Dose-response bioassays with acephate were performed on tobacco thrips field populations and a susceptible laboratory population. Bioassay results suggest that tobacco thrips have developed resistance to acephate and other organophosphate insecticides; however, this resistance seems to be most severe in Arkansas, Tennessee, and the Delta region of Mississippi. Resistance to other classes of insecticides were perhaps even more evident in these bioassays. The performance of these insecticides in field trials was variable, with tobacco thrips only showing consistent signs of resistance to lambda-cyhalothrin. However, it is evident that many populations of tobacco thrips are resistant to multiple classes of insecticides. Further research is needed to determine heritability and resistance mechanism(s).


Assuntos
Inseticidas , Tisanópteros , Animais , Bioensaio , Dimetoato , Gossypium , Inseticidas/farmacologia , Nitrilas , Compostos Organotiofosforados , Fosforamidas , Piretrinas , Nicotiana , Estados Unidos
3.
Insects ; 13(1)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35055934

RESUMO

Helicoverpa armigera nucleopolyhedrovirus (HearNPV) is a naturally occurring virus commercially produced for control of Heliothines, including Helicoverpa zea. One drawback with using this virus for control has been the slower time to mortality compared with synthetic insecticides. However, a new formulation (Heligen®) has anecdotally been thought to result in quicker mortality than previously observed. The objective of this study was to evaluate percent defoliation, the efficacy of HearNPV on mortality for each H. zea larval instar, and the potential for control of a second infestation. Fourteen days after the first infestation, all plants were re-infested with a second instar larva to simulate a second infestation. Helicoverpa armigera nucleopolyhedrovirus was effective at killing 1st-3rd instars, resulting in 99% mortality over 4-6 days. However, 4th and 5th instar mortality only reached 35%. Second infestation larvae died between 3.4 and 3.8 days, significantly faster than the 1st infestation of 2nd instars, which had a mean time to mortality of 4.9 days. An increase in mortality rate is probably due to increasing viral concentrations after viral replication within the first hosts. Final defoliation percentages were significantly smaller in the treated plants versus the untreated plants. Only 3rd and 4th instar larvae caused percent defoliation to exceed the current Arkansas action threshold of 40%. Helicoverpa armigera nucleopolyhedrovirus in the Heligen formulation can control 1st-3rd instars within 4-6 days, while keeping defoliation below the action threshold of 40%.

4.
J Econ Entomol ; 114(2): 993-997, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33459771

RESUMO

Soybean, Glycine max (L.) Merr., is planted during 3.5-4 mo across the Mid-South United States. Currently, no information exists regarding the effects of planting date on soybean yield loss from early season defoliation. In 2015 and 2016, to evaluate the effects of planting date on yield loss from defoliation, soybean were planted in field plots 2 wk apart from early April to mid-June, for a total of six planting dates. Each planting date included a nondefoliated control and a 100% defoliation treatment where leaves were manually excised at the V4 growth stage. Mean yield loss from defoliation varied across planting dates, with mid-April plantings having the least amount yield reduction, 573 kg/ha, and early-June plantings having the greatest yield reduction, 904 kg/ha. Percent yield reduction from defoliation increased as planting was delayed, suggesting that defoliation thresholds might need adjustment based on planting date and yield potential. However, more research is needed at lower levels of defoliation to accurately delineate such thresholds.


Assuntos
Glycine max , Folhas de Planta , Animais , Estações do Ano
5.
J Econ Entomol ; 112(6): 2731-2736, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31504628

RESUMO

The sugarcane aphid, Melanaphis sacchari (Zehntner) (Hemiptera: Aphididae), has become a major pest of grain sorghum, Sorghum bicolor (L.) Moench, in the United States in recent years. Feeding by large densities of sugarcane aphids causes severe damage, which can lead to a total loss of yield in extreme cases. Our objective was to determine the effect of grain sorghum planting date on sugarcane aphid population dynamics and their potential to reduce yields. We conducted field experiments from 2015 to 2017 in which an aphid-susceptible grain sorghum hybrid was planted at four different dates, which encompassed the typical range of planting dates used in Arkansas production systems. Plots were either protected from sugarcane aphid feeding using foliar insecticide sprays, or left untreated to allow natural populations of sugarcane aphids to colonize and reproduce freely. Planting date impacted both the magnitude and severity of sugarcane aphid infestations, with the highest population densities (and subsequent reductions in sorghum yield) generally occurring on plots that were planted in May or June. Sugarcane aphid feeding reduced yields in the untreated plots in two of the four planting date categories we tested. Earlier planting generally resulted in less sugarcane aphid damage and improved yields compared with later planting dates. While the effect of planting date on sugarcane aphid populations is likely to vary by region, sorghum producers should consider grain sorghum planting date as a potential cultural tactic to reduce the impact of sugarcane aphid.


Assuntos
Afídeos , Saccharum , Sorghum , Animais , Arkansas , Dinâmica Populacional
6.
J Econ Entomol ; 112(6): 2713-2718, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31290554

RESUMO

The rice stink bug, Oebalus pugnax (F.), is a key pest of heading rice, Oryza sativa L. (Poales: Poaceae), in the southern United States. Sweep net sampling is the recommended method for sampling rice stink bug in rice, but there currently exists no specific recommendation for sweep length, and a large amount of variation likely exists amongst samplers. The objectives of this study were to determine the role that sweep length plays in sampling accuracy and determine the feasibility of using sweep lengths smaller than 180°. When monitoring sweep lengths by consultants, producers, and researchers, a large amount of variation in sweep length and a significant linear relationship between sweep length and rice stink bug catch per 10 sweeps was observed. Sweep length was then controlled at three levels (0.8, 1.8, and 3.5 m) and a change from 0.8 to 1.8 m in sweep length led to an increase on average of 2.28 rice stink bugs per 10 sweeps. These data suggest knowledge of sweep length is vital, and paired with large amounts of observed variation in sweep length, recommending a specific sweep length is ideal. Using Taylor's values, it was determined that 1.8 m sweeps resulted in density estimates that were as reliable as 3.5 m (180°) sweeps, suggesting a longer sweep length was not necessary. A 1.8 m sweep length recommendation would create an easier sampling regimen that is still reliable, which could lead to more accurate action threshold decisions being made for rice stink bug if it increases adoption in consultants and producers.


Assuntos
Heterópteros , Oryza , Animais , Ninfa , Densidade Demográfica , Reprodutibilidade dos Testes
7.
J Econ Entomol ; 112(3): 1098-1104, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-30715431

RESUMO

Horizontal transmission of Helicoverpa armigera nucleopolyhedrovirus (HearNPV) has been found to occur through several pathways involving abiotic factors such as soil, wind, and rain, and biotic factors such as predators, parasitoids, and infected hosts. Previous studies examining horizontal transmission through certain biological carriers speculated they were likely not significant in increasing infection rates, however; these studies only focused on a relatively small number of arthropods present within a field setting. This study was conducted to evaluate the horizontal transmission potential of HearNPV by all potential biological carriers when applied as a foliar bioinsecticide or as virus-infected, nonmotile Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) larvae in a soybean field. Soybean plots were either sprayed with HearNPV or infested with late-stage HearNPV-infected larvae, and sample zones were sampled 3, 7, 10, 14, 17, and 21 days after the infestation, and analyzed for viral presence using PCR. We then identified HearNPV carriers through contamination from the application (involuntary) or through contact with a HearNPV-infected larva (voluntary). Both were confirmed through PCR analysis. Regardless of application technique, on average, HearNPV was capable of disseminating up to 61.0 m in 3 d after inoculation and was found within the sampled canopy 13-21 d after inoculation. Several arthropods were identified as novel carriers of HearNPV. Results from this study indicate that many novel HearNPV carriers are likely important in disseminating HearNPV.


Assuntos
Mariposas , Nucleopoliedrovírus , Animais , Baculoviridae , Larva
8.
PLoS One ; 11(12): e0168603, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28030617

RESUMO

Imidacloprid is a neonicotinoid pesticide heavily used by the agricultural industry and shown to have negative impacts on honey bees above certain concentrations. We evaluated the effects of different imidacloprid concentrations in sugar syrup using cage and field studies, and across different environments. Honey bee colonies fed sublethal concentrations of imidicloprid (0, 5, 20 and 100 ppb) over 6 weeks in field trials at a desert site (Arizona), a site near intensive agriculture (Arkansas) and a site with little nearby agriculture but abundant natural forage (Mississippi) were monitored with respect to colony metrics, such as adult bee and brood population sizes, as well as pesticide residues. Hive weight and internal hive temperature were monitored continuously over two trials in Arizona. Colonies fed 100 ppb imidacloprid in Arizona had significantly lower adult bee populations, brood surface areas and average frame weights, and reduced temperature control, compared to colonies in one or more of the other treatment groups, and consumption rates of those colonies were lower compared to other colonies in Arizona and Arkansas, although no differences in capped brood or average frame weight were observed among treatments in Arkansas. At the Mississippi site, also rich in alternative forage, colonies fed 5 ppb imidacloprid had less capped brood than control colonies, but contamination of control colonies was detected. In contrast, significantly higher daily hive weight variability among colonies fed 5 ppb imidacloprid in Arizona suggested greater foraging activity during a nectar flow post treatment, than any other treatment group. Imidacloprid concentrations in stored honey corresponded well with the respective syrup concentrations fed to the colonies and remained stable within the hive for at least 7 months after the end of treatment.


Assuntos
Abelhas/efeitos dos fármacos , Abelhas/crescimento & desenvolvimento , Imidazóis/efeitos adversos , Inseticidas/efeitos adversos , Nitrocompostos/efeitos adversos , Animais , Abelhas/metabolismo , Neonicotinoides , Praguicidas/efeitos adversos , Estados Unidos
9.
Environ Sci Technol ; 48(16): 9762-9, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25010122

RESUMO

Research was done during 2012 to evaluate the potential exposure of pollinators to neonicotinoid insecticides used as seed treatments on corn, cotton, and soybean. Samples were collected from small plot evaluations of seed treatments and from commercial fields in agricultural production areas in Arkansas, Mississippi, and Tennessee. In total, 560 samples were analyzed for concentrations of clothianidin, imidacloprid, thiamethoxam, and their metabolites. These included pollen from corn and cotton, nectar from cotton, flowers from soybean, honey bees, Apis mellifera L., and pollen carried by foragers returning to hives, preplanting and in-season soil samples, and wild flowers adjacent to recently planted fields. Neonicotinoid insecticides were detected at a level of 1 ng/g or above in 23% of wild flower samples around recently planted fields, with an average detection level of about 10 ng/g. We detected neonicotinoid insecticides in the soil of production fields prior to planting at an average concentration of about 10 ng/g, and over 80% of the samples having some insecticide present. Only 5% of foraging honey bees tested positive for the presence of neonicotinoid insecticides, and there was only one trace detection (< 1 ng/g) in pollen being carried by those bees. Soybean flowers, cotton pollen, and cotton nectar contained little or no neonicotinoids resulting from insecticide seed treatments. Average levels of neonicotinoid insecticides in corn pollen ranged from less than 1 to 6 ng/g. The highest neonicotinoid concentrations were found in soil collected during early flowering from insecticide seed treatment trials. However, these levels were generally not well correlated with neonicotinoid concentrations in flowers, pollen, or nectar. Concentrations in flowering structures were well below defined levels of concern thought to cause acute mortality in honey bees. The potential implications of our findings are discussed.


Assuntos
Abelhas , Guanidinas/análise , Imidazóis/análise , Inseticidas/análise , Nitrocompostos/análise , Oxazinas/análise , Tiazóis/análise , Animais , Arkansas , Monitoramento Ambiental , Flores/química , Gossypium , Mississippi , Neonicotinoides , Néctar de Plantas/química , Pólen/química , Polinização , Sementes , Poluentes do Solo/análise , Glycine max , Tennessee , Tiametoxam , Zea mays
10.
J Econ Entomol ; 102(5): 1827-36, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19886447

RESUMO

The tarnished plant bug, Lygus lineolaris (Palisot de Beauvois) (Hemiptera: Miridae), has become the primary target of foliar insecticides in cotton, Gossypium hirsutum L., throughout the Midsouth over the past several years. This prompted a reevaluation of existing action thresholds for flowering cotton under current production practices and economics. A trial was conducted at 19 locations throughout the Midsouth during 2006 and 2007. Threshold treatments ranged from a weekly automatic insecticide application to a very high threshold of 10 tarnished plant bugs per 1.5 row-m on a black drop cloth. Individually, all locations reached the lowest threshold, and eight locations had a significant yield loss from tarnished plant bugs. Across all locations, lint yield decreased 0.85 to 1.72% for each threshold increase of one tarnished plant bug per 1.5 row-m. Yield loss was most closely correlated to pest density during the latter half of the flowering period. The relationship between plant bug density or damage and yield was similar for drop cloth, sweep net, and dirty square sampling methods, but the correlations among these sampling methods were not high. Incorporating actual insecticide application data from the trial and average production and economic factors for Midsouth cotton, the economic threshold, if monitoring once per week, should be between 1.6 and 2.6 tarnished plant bugs per 1.5 row-m during the flowering period. More frequent monitoring or situations where insecticide applications are more efficacious may alter this threshold.


Assuntos
Flores/parasitologia , Gossypium/parasitologia , Hemípteros , Inseticidas/farmacologia , Densidade Demográfica , Animais , Fibra de Algodão/economia , Geografia , Hemípteros/efeitos dos fármacos , Hemípteros/patogenicidade , Tamanho da Amostra , Sudeste dos Estados Unidos , Sudoeste dos Estados Unidos
11.
J Econ Entomol ; 102(6): 2109-15, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20069839

RESUMO

Insecticide applications to control tarnished plant bug, Lygus lineolaris (Palisot de Beauvois) (Hemiptera: Miridae), during cotton, Gossypium hirsutum L., bud formation are common throughout the Midsouth of the United States. Cultivation practices and the pest complex have changed since action thresholds were established for this pest. A trial was conducted at 33 locations over 3 yr throughout the Midsouth to evaluate tarnished plant bug damage to cotton during the prebloom period. There was no consistent yield response to action thresholds, but average tarnished plant bug density and average square loss were both significant factors impacting lint yield. Based on the yield responses and application frequency of the various action thresholds, the best economic scenario occurred when tarnished plant bug density during the prebloom period averaged eight per 100 sweeps and square retention averaged 90%. The action thresholds required to achieve these averages are expected to be higher than these levels because pest pressure is not normally constant during the prebloom period. When insecticides are required, an application interval shorter than one week may be needed to obtain satisfactory control.


Assuntos
Biomassa , Gossypium/parasitologia , Heterópteros/fisiologia , Interações Hospedeiro-Parasita , Animais , Gossypium/crescimento & desenvolvimento , Sudeste dos Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA