RESUMO
A series of dodecanuclear highly positively charged homo- and heterometallamacrocycles [{Pd(η3 -2-Me-C3 H4 )}6 (4-PPh2 py)12 {M2 (tpbz)}3 ]18+ (M=Pd, Pt; tpbz=1,2,4,5-tetrakis(diphenylphosphanyl)benzene were synthesized by the quantitative self-assembly of {Pd(η3 -2-Me-C3 H4 )}+ , {M2 (tpbz)}4+ and 4-PPh2 py moieties in 2:1:4 molar ratio. The cationic assemblies were obtained as salts of different fluorinated anions with diverse sizes and electronic properties, namely BF4 - , PF6 - , SbF6 - and CF3 SO3 - . The new crown-like metallamacrocycles showed remarkable differences in their NMR spectra due to the presence of the different counteranions. On the basis of the observed variations, the metallacycles have been tested as catalytic precursors in allylic alkylation reactions. The anion-dependent activity and selectivity has been analysed and compared with that of the corresponding monometallic allylic corners [Pd(η3 -2-Me-C3 H4 )(4-PPh2 py)2 ]X (X=BF4 - , PF6 - , SbF6 - , CF3 SO3 - ). DFT calculations have been employed in order to help to the interpretation of the experimental data and to model the anion-crown interactions.
RESUMO
The gas-phase fragmentation behavior of self-assembled metallo-supramolecular rhombs based on an unusual chiral [2.2]paracyclophane bis(pyridine) ligand is studied by collision-induced dissociation mass spectrometry. The fragmentation patterns strongly depend on the charge state of the respective mass-selected aggregate. For the doubly charged ions, simple symmetric fragmentation is observed in full accordance with previous results reported for related metallo-supramolecular species. The triply charged species cleaves unsymmetrically which can be rationalized by a preferred formation of ions with low charge density. CID of the quadruply charged rhomb reveals a complex fragmentation. Besides ligand oxidation to the radical cation, facile cleavage of the central covalently bound part of the [2.2]paracyclophane ligand takes place which is even preferred over rupture of the weak dative pyridine-Pd bond.
RESUMO
A series of selectively self-assembled metallo-supramolecular square-like macrocycles with unsymmetric ditopic linkers and two different types of metal corners, i.e., {Pd(η3-2-Me-C3H4)} and {M(dppp)} with dppp = 1,3-bis(diphenylphosphino)propane and M = Pd2+ or Pt2+, have been studied in the gas phase using collision-induced dissociation. The aggregates show distinct fragmentation patterns determined by ligand length, i.e, aggregate size, and type of metal corner. Information on relative binding strength can be deduced. This is of particular interest for (methylallyl)Pd as a relatively new building block in metallo-supramolecular chemistry. The phosphane end of the unsymmetric ligand connected to (η3-2-Me-C3H4)Pd is bound significantly stronger than its pyridine end to (dppp)Pt and (dppp)Pd. These results are corroborated by DFT calculations.
RESUMO
By employing the subcomponent self-assembly approach utilizing 5,10,15,20-tetrakis(4-aminophenyl)porphyrin or its zinc(II) complex, 1H-4-imidazolecarbaldehyde, and either zinc(II) or iron(II) salts, we were able to prepare O-symmetric cages having a confined volume of ca. 1300â Å3 . The use of iron(II) salts yielded coordination cages in the high-spin state at room temperature, manifesting spin-crossover in solution at low temperatures, whereas corresponding zinc(II) salts led to the corresponding diamagnetic analogues. The new cages were characterized by synchrotron X-ray crystallography, high-resolution mass spectrometry, and NMR, Mössbauer, IR, and UV/Vis spectroscopy. The cage structures and UV/Vis spectra were independently confirmed by state-of-the-art DFT calculations. A remarkably high-spin-stabilizing effect through encapsulation of C70 was observed. The spin-transition temperature T1/2 is lowered by 20â K in the host-guest complex.
RESUMO
The square-like homo- and heterometallamacrocycles [{Pd(η(3) -2-Me-C3 H4 )(L(n) )2 }2 {M(dppp)}2 ](CF3 SO3 )6 (dppp=1,3-bis(diphenylphosphino)propane) and [{Pd(η(3) -2-Me-C3 H4 )(L(1) )2 }2 {M(PPh3 )2 }2 ](CF3 SO3 )6 [py=pyridine, M=Pd, Pt, L(n=) 4-PPh2 py (L(1) ), 4-C6 F4 PPh2 py (L(2) )] containing allyl corners were synthesised by antisymbiotic self-assembly of the different palladium and platinum metallic corners and the ambidentate N,P ligands. All the synthesised assemblies displayed a complex dynamic behaviour in solution, the rate of which is found to be dependent on the electronic and/or steric nature of the different building blocks. A kinetico-mechanistic study by NMR line shape analysis of the dynamics of some of these assemblies was undertaken in order to determine the corresponding thermal activation parameters. Both an enhanced thermodynamic stability and slower dynamics were observed for platinum-pyridine-containing species when compared with their palladium analogues. Time-dependent NMR spectroscopy in combination with ESI mass spectrometry was used to study the exchange between the assemblies and their building blocks, as well as that occurring between different metallamacrocycles. Preliminary studies were carried out on the activity of some of the metallamacrocyclic compounds as catalytic precursors in the allylic substitution reaction, and the results compared with that of the monometallic allylic corner [Pd(η(3) -2-Me-C3 H4 )(L(1) )2 ](+) .
RESUMO
A simple approach toward preparation of heteroleptic two-dimensional (2D) rectangles and three-dimensional (3D) triangular prisms is described utilizing the HETPYP (HETeroleptic PYridyl and Phenanthroline metal complexes) concept. By mixing metal-loaded linear bisphenanthrolines of varying lengths with diverse (multi)pyridine (py) ligands in a proper ratio, six different self-assembled architectures arise cleanly and spontaneously in the absence of any template. They are characterized by (1)H and DOSY NMR, ESI-FT-ICR mass spectrometry as well as by Job plots and UV-vis titrations. Density functional theory (DFT) computations provide information about each structure. A stoichiometry-controlled supramolecule-to-supramolecule interconversion based on the relative amounts of metal bisphenanthroline and bipyridine forces the rectangular assembly to reorganize to a rack architecture and back to the rectangle, as clearly supported by variable temperature and DOSY NMR as well as dynamic light scattering data. The highly dynamic nature of the assemblies represents a promising starting point for constitutional dynamic materials.
RESUMO
A stoichiometric variant of the HETPYP concept (HETeroleptic PYridine and Phenanthroline metal complexes) opens the venue to heteroleptic metallosupramolecular HETPYP-I assemblies both in solution and the solid state, involving the trigonal [Cu(phenAr(2))(py)](+) coordination motif (phenAr(2) = 2,9-diarylphenanthroline; py = various oligopyridines). Combining the same building blocks at another stoichiometric ratio furnished metallosupramolecular HETPYP-II aggregates in the solid state, now based on the tetrahedral [Cu(phenAr(2))(py)(2)](+) coordination motif. Thus, a stoichiometry-controlled structural changeover based on the relative amounts of oligopyridines leads from a discrete assembly with trigonally coordinated copper(I) centers to a coordination polymer with tetrahedrally coordinated copper(I) ions, as shown by solid state studies. In solution, the analysis of both stoichiometric variants indicates that the HETPYP-I structure is congruent with that in the solid state, while the HETPYP-II assembly, as established through DOSY NMR and dynamic light scattering measurements, is only oligomeric at low temperature. At room temperature, i.e. due to entropic costs, the latter assembly prefers to keep "unsaturated" coordination sites that are in rapid exchange, making it an interesting system as a dynamic protecting group and for constitutional dynamic materials through the exchange and reshuffling of components.
RESUMO
Plant genetic engineering has the potential to introduce new allergenic proteins into foods but, at the same time, it can be used to remove established allergens. Here, we report the molecular characterization of Lyc e 3, a new tomato (Lycopersicon esculentum) allergen, and the efficient down-regulation of its expression in transgenic tomato plants. Following the identification of an immunoglobulin E (IgE)-binding 9-kDa polypeptide in tomato peel, designated Lyc e 3, its partial amino acid sequence was determined by N-terminal protein sequencing. Sequence comparison revealed that Lyc e 3 encodes a nonspecific lipid transfer protein (ns-LTP). In plants, ns-LTPs are encoded by large gene families which differ in primary amino acid sequence, expression and proposed cellular function. To identify Lyc e 3 encoding complementary DNAs (cDNAs), public tomato expressed sequence tag (EST) databases were screened for ns-LTP sequences. Following this strategy, two cDNAs, LTPG1 and LTPG2, with high homology to the N-terminal sequence of Lyc e 3, were identified. Ectopic expression of LTPG1 and LTPG2 in Escherichia coli, followed by immunoblotting, verified their IgE reactivity. Subsequently, transgenic tomato plants constitutively expressing LTPG1- or LTPG2-specific double-stranded RNA interference (dsRNAi) constructs were created and tested for the suppression of Lyc e 3 accumulation. Efficient silencing of Lyc e 3 was documented by Northern and Western blotting. In both cases, Lyc e 3 accumulation was decreased to levels below the detection limit (less than 0.5% of the wild-type protein). The allergenic potential of Lyc e 3-deficient tomato fruits was tested by measuring histamine release from sensitized human basophils stimulated with transgenic and parental lines. These assays revealed a strong (10- to 100-fold) decrease in histamine release of human basophils challenged with transgenic fruit extracts when compared with control extracts. These results demonstrate the feasibility of creating low allergenic tomato fruits by means of dsRNAi inhibition.
Assuntos
Alérgenos/genética , Antígenos de Plantas/genética , Proteínas de Transporte/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/imunologia , Interferência de RNA , Solanum lycopersicum/genética , Solanum lycopersicum/imunologia , Alérgenos/química , Alérgenos/imunologia , Sequência de Aminoácidos , Antígenos de Plantas/química , Antígenos de Plantas/imunologia , Basófilos/efeitos dos fármacos , Basófilos/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/imunologia , Células Cultivadas , Regulação para Baixo , Escherichia coli/genética , Etiquetas de Sequências Expressas , Frutas/genética , Frutas/metabolismo , Histamina/metabolismo , Humanos , Immunoblotting , Imunoglobulina E/metabolismo , Dados de Sequência Molecular , Extratos Vegetais/farmacologia , Proteínas de Plantas/química , Proteínas de Plantas/imunologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Engenharia de Proteínas , RNA de Cadeia Dupla/farmacologia , Alinhamento de SequênciaRESUMO
BACKGROUND: Profilin is a small actin-binding protein that contributes to the allergenic potency of many fruits and vegetables, including tomato. Two highly similar genes encoding tomato profilin have been isolated and designated as allergen Lyc e 1.01 and Lyc e 1.02. OBJECTIVE: The aim of the study was to generate profilin-reduced hypoallergenic tomato fruits by silencing of both genes in transgenic tomato plants by means of RNA interference (RNAi). METHODS: The efficiency of gene silencing was documented by means of Northern blotting, immunoblotting, and skin prick testing. RESULTS: Quantification of the remaining protein revealed that profilin accumulation in transgenic fruits was decreased 10-fold compared with that seen in untransformed controls. This decrease was sufficient to cause a reduced allergenic reactivity in patients with tomato allergy, as determined with skin prick tests. Because most patients with tomato allergy are not monosensitized to profilin, the IgE reactivity to the profilin-silenced tomato fruits in vivo varied widely between individuals tested. CONCLUSION: We could demonstrate the efficient silencing of both profilin genes in transgenic tomato plants using RNAi. This resulted in Lyc e 1-diminished tomato fruits, providing proof of concept and demonstrating that RNAi can be used to design allergen-reduced food. However, simultaneous silencing of multiple allergens will be required to design hypoallergenic tomatoes. CLINICAL IMPLICATIONS: Our findings demonstrate the feasibility of creating low-allergenic food by using RNAi. This concept constitutes a novel approach to allergen avoidance.
Assuntos
Alérgenos/genética , Hipersensibilidade Alimentar/imunologia , Inativação Gênica , Solanum lycopersicum/genética , Solanum lycopersicum/imunologia , Adulto , Alérgenos/efeitos adversos , Antígenos de Plantas , Feminino , Hipersensibilidade Alimentar/sangue , Alimentos Geneticamente Modificados , Humanos , Solanum lycopersicum/efeitos adversos , Pessoa de Meia-Idade , Plantas Geneticamente Modificadas , Interferência de RNARESUMO
BACKGROUND: Today, for patients with food allergy, the only possibility to prevent allergic reactions is avoidance of the allergenic food. Genetic engineering of hypoallergenic plants by means of RNA interference (RNAi) could be an approach to improve the quality of life of subjects with food allergy. OBJECTIVES: We sought to achieve stable inhibition of expression of the allergenic nonspecific lipid transfer protein Lyc e 3 in tomato and to analyze the reduction of allergenicity in vitro by using histamine release assays and in vivo by using skin prick tests with transgenic tomato fruits. METHODS: Gene silencing was performed by means of RNAi and monitored by using Western blotting with nonspecific lipid transfer protein-specific antibodies and sera from patients with tomato allergy. Dose-dependent basophil histamine release assays, prick-to-prick skin testing, and determination of endogenous histamine content were performed with fruits harvested from plants of the first and second generation to assess the allergenic potency compared with that of wild-type fruits. RESULTS: We demonstrated that silencing of Lyc e 3 by means of RNAi contributes to reduced skin reactivity and is passed on to the next generation of fruits. A significant reduction of allergenic potency was determined in vitro and confirmed by using skin prick tests. CONCLUSION: Taken together, these results indicate that RNAi technology is an effective tool to generate foods with reduced allergenicity. CLINICAL IMPLICATIONS: Allergen-reduced plant foods might allow reduction of dietary restrictions for patients allergic to panallergen families.