Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Elife ; 122023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37934199

RESUMO

Male infertility is common and complex, presenting a wide range of heterogeneous phenotypes. Although about 50% of cases are estimated to have a genetic component, the underlying cause often remains undetermined. Here, from whole-exome sequencing on samples from 168 infertile men with asthenoteratozoospermia due to severe sperm flagellum, we identified homozygous ZMYND12 variants in four unrelated patients. In sperm cells from these individuals, immunofluorescence revealed altered localization of DNAH1, DNALI1, WDR66, and TTC29. Axonemal localization of ZMYND12 ortholog TbTAX-1 was confirmed using the Trypanosoma brucei model. RNAi knock-down of TbTAX-1 dramatically affected flagellar motility, with a phenotype similar to the sperm from men bearing homozygous ZMYND12 variants. Co-immunoprecipitation and ultrastructure expansion microscopy in T. brucei revealed TbTAX-1 to form a complex with TTC29. Comparative proteomics with samples from Trypanosoma and Ttc29 KO mice identified a third member of this complex: DNAH1. The data presented revealed that ZMYND12 is part of the same axonemal complex as TTC29 and DNAH1, which is critical for flagellum function and assembly in humans, and Trypanosoma. ZMYND12 is thus a new asthenoteratozoospermia-associated gene, bi-allelic variants of which cause severe flagellum malformations and primary male infertility.


Assuntos
Astenozoospermia , Infertilidade Masculina , Humanos , Masculino , Animais , Camundongos , Sêmen , Flagelos , Fertilidade , Proteínas de Ligação ao Cálcio , Dineínas
2.
iScience ; 26(8): 107354, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37520705

RESUMO

Sperm fertilization ability mainly relies on proper sperm progression through the female genital tract and capacitation, which involves phosphorylation signaling pathways triggered by calcium and bicarbonate. We performed exome sequencing of an infertile asthenozoospermic patient and identified truncating variants in MAP7D3, encoding a microtubule-associated protein, and IQCH, encoding a protein of unknown function with enzymatic and signaling features. We demonstrate the deleterious impact of both variants on sperm transcripts and proteins from the patient. We show that, in vitro, patient spermatozoa could not induce the phosphorylation cascades associated with capacitation. We also provide evidence for IQCH association with calmodulin, a well-established calcium-binding protein that regulates the calmodulin kinase. Notably, we describe IQCH spatial distribution around the sperm axoneme, supporting its function within flagella. Overall, our work highlights the cumulative pathological impact of gene mutations and identifies IQCH as a key protein required for sperm motility and capacitation.

3.
Hum Reprod ; 36(11): 2848-2860, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34529793

RESUMO

STUDY QUESTION: Are ICSI outcomes impaired in cases of severe asthenozoospermia with multiple morphological abnormalities of the flagellum (MMAF phenotype)? SUMMARY ANSWER: Despite occasional technical difficulties, ICSI outcomes for couples with MMAF do not differ from those of other couples requiring ICSI, irrespective of the genetic defect. WHAT IS KNOWN ALREADY: Severe asthenozoospermia, especially when associated with the MMAF phenotype, results in male infertility. Recent findings have confirmed that a genetic aetiology is frequently responsible for this phenotype. In such situations, pregnancies can be achieved using ICSI. However, few studies to date have provided detailed analyses regarding the flagellar ultrastructural defects underlying this phenotype, its genetic aetiologies, and the results of ICSI in such cases of male infertility. STUDY DESIGN, SIZE, DURATION: We performed a retrospective study of 25 infertile men exhibiting severe asthenozoospermia associated with the MMAF phenotype identified through standard semen analysis. They were recruited at an academic centre for assisted reproduction in Paris (France) between 2009 and 2017. Transmission electron microscopy (TEM) and whole exome sequencing (WES) were performed in order to determine the sperm ultrastructural phenotype and the causal mutations, respectively. Finally 20 couples with MMAF were treated by assisted reproductive technologies based on ICSI. PARTICIPANTS/MATERIALS, SETTING, METHODS: Patients with MMAF were recruited based on reduced sperm progressive motility and increased frequencies of absent, short, coiled or irregular flagella compared with those in sperm from fertile control men. A quantitative analysis of the several ultrastructural defects was performed for the MMAF patients and for fertile men. The ICSI results obtained for 20 couples with MMAF were compared to those of 378 men with oligoasthenoteratozoospermia but no MMAF as an ICSI control group. MAIN RESULTS AND THE ROLE OF CHANCE: TEM analysis and categorisation of the flagellar anomalies found in these patients provided important information regarding the structural defects underlying asthenozoospermia and sperm tail abnormalities. In particular, the absence of the central pair of axonemal microtubules was the predominant anomaly observed more frequently than in control sperm (P < 0.01). Exome sequencing, performed for 24 of the 25 patients, identified homozygous or compound heterozygous pathogenic mutations in CFAP43, CFAP44, CFAP69, DNAH1, DNAH8, AK7, TTC29 and MAATS1 in 13 patients (54.2%) (11 affecting MMAF genes and 2 affecting primary ciliary dyskinesia (PCD)-associated genes). A total of 40 ICSI cycles were undertaken for 20 MMAF couples, including 13 cycles (for 5 couples) where a hypo-osmotic swelling (HOS) test was required due to absolute asthenozoospermia. The fertilisation rate was not statistically different between the MMAF (65.7%) and the non-MMAF (66.0%) couples and it did not differ according to the genotype or the flagellar phenotype of the subjects or use of the HOS test. The clinical pregnancy rate per embryo transfer did not differ significantly between the MMAF (23.3%) and the non-MMAF (37.1%) groups. To date, 7 of the 20 MMAF couples have achieved a live birth from the ICSI attempts, with 11 babies born without any birth defects. LIMITATIONS, REASONS FOR CAUTION: The ICSI procedure outcomes were assessed retrospectively on a small number of affected subjects and should be confirmed on a larger cohort. Moreover, TEM analysis could not be performed for all patients due to low sperm concentrations, and WES results are not yet available for all of the included men. WIDER IMPLICATIONS OF THE FINDINGS: An early and extensive phenotypic and genetic investigation should be considered for all men requiring ICSI for severe asthenozoospermia. Although our study did not reveal any adverse ICSI outcomes associated with MMAF, we cannot rule out that some rare genetic causes could result in low fertilisation or pregnancy rates. STUDY FUNDING/COMPETING INTEREST(S): No external funding was used for this study and there are no competing interests. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Astenozoospermia , Infertilidade Masculina , Astenozoospermia/genética , Feminino , Flagelos , Humanos , Infertilidade Masculina/genética , Masculino , Fenótipo , Gravidez , Estudos Retrospectivos , Injeções de Esperma Intracitoplásmicas , Cauda do Espermatozoide , Espermatozoides
4.
Hum Genet ; 140(7): 1031-1043, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33689014

RESUMO

Cilia and flagella are formed around an evolutionary conserved microtubule-based axoneme and are required for fluid and mucus clearance, tissue homeostasis, cell differentiation and movement. The formation and maintenance of cilia and flagella require bidirectional transit of proteins along the axonemal microtubules, a process called intraflagellar transport (IFT). In humans, IFT defects contribute to a large group of systemic diseases, called ciliopathies, which often display overlapping phenotypes. By performing exome sequencing of a cohort of 167 non-syndromic infertile men displaying multiple morphological abnormalities of the sperm flagellum (MMAF) we identified two unrelated patients carrying a homozygous missense variant adjacent to a splice donor consensus site of IFT74 (c.256G > A;p.Gly86Ser). IFT74 encodes for a core component of the IFT machinery that is essential for the anterograde transport of tubulin. We demonstrate that this missense variant affects IFT74 mRNA splicing and induces the production of at least two distinct mutant proteins with abnormal subcellular localization along the sperm flagellum. Importantly, while IFT74 deficiency was previously implicated in two cases of Bardet-Biedl syndrome, a pleiotropic ciliopathy with variable expressivity, our data indicate that this missense mutation only results in primary male infertility due to MMAF, with no other clinical features. Taken together, our data indicate that the nature of the mutation adds a level of complexity to the clinical manifestations of ciliary dysfunction, thus contributing to the expanding phenotypical spectrum of ciliopathies.


Assuntos
Astenozoospermia/genética , Síndrome de Bardet-Biedl/genética , Proteínas do Citoesqueleto/genética , Flagelos/genética , Infertilidade Masculina/genética , Mutação de Sentido Incorreto/genética , Tubulina (Proteína)/genética , Animais , Axonema/genética , Cílios/genética , Homozigoto , Humanos , Masculino , Transporte Proteico/genética , Sítios de Splice de RNA/genética , Cauda do Espermatozoide/fisiologia , Sequenciamento do Exoma/métodos
6.
Clin Genet ; 99(5): 684-693, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33462806

RESUMO

Asthenozoospermia, defined by the absence or reduction of sperm motility, constitutes the most frequent cause of human male infertility. This pathological condition is caused by morphological and/or functional defects of the sperm flagellum, which preclude proper sperm progression. While in the last decade many causal genes were identified for asthenozoospermia associated with severe sperm flagellar defects, the causes of purely functional asthenozoospermia are still poorly defined. We describe here the case of an infertile man, displaying asthenozoospermia without major morphological flagellar anomalies and carrying a homozygous splicing mutation in SLC9C1 (sNHE), which we identified by whole-exome sequencing. SLC9C1 encodes a sperm-specific sodium/proton exchanger, which in mouse regulates pH homeostasis and interacts with the soluble adenylyl cyclase (sAC), a key regulator of the signalling pathways involved in sperm motility and capacitation. We demonstrate by means of RT-PCR, immunodetection and immunofluorescence assays on patient's semen samples that the homozygous splicing mutation (c.2748 + 2 T > C) leads to in-frame exon skipping resulting in a deletion in the cyclic nucleotide-binding domain of the protein. Our work shows that in human, similar to mouse, SLC9C1 is required for sperm motility. Overall, we establish a homozygous truncating mutation in SLC9C1 as a novel cause of human asthenozoospermia and infertility.


Assuntos
Astenozoospermia/genética , Fertilidade/fisiologia , Trocadores de Sódio-Hidrogênio/fisiologia , Motilidade dos Espermatozoides/fisiologia , Adulto , Homozigoto , Humanos , Infertilidade/genética , Masculino , Linhagem , Splicing de RNA/genética , Reação em Cadeia da Polimerase em Tempo Real , Trocadores de Sódio-Hidrogênio/genética , Cauda do Espermatozoide/patologia , Sequenciamento do Exoma
7.
Am J Hum Genet ; 105(6): 1148-1167, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31735292

RESUMO

In humans, structural or functional defects of the sperm flagellum induce asthenozoospermia, which accounts for the main sperm defect encountered in infertile men. Herein we focused on morphological abnormalities of the sperm flagellum (MMAF), a phenotype also termed "short tails," which constitutes one of the most severe sperm morphological defects resulting in asthenozoospermia. In previous work based on whole-exome sequencing of a cohort of 167 MMAF-affected individuals, we identified bi-allelic loss-of-function mutations in more than 30% of the tested subjects. In this study, we further analyzed this cohort and identified five individuals with homozygous truncating variants in TTC29, a gene preferentially and highly expressed in the testis, and encoding a tetratricopeptide repeat-containing protein related to the intraflagellar transport (IFT). One individual carried a frameshift variant, another one carried a homozygous stop-gain variant, and three carried the same splicing variant affecting a consensus donor site. The deleterious effect of this last variant was confirmed on the corresponding transcript and protein product. In addition, we produced and analyzed TTC29 loss-of-function models in the flagellated protist T. brucei and in M. musculus. Both models confirmed the importance of TTC29 for flagellar beating. We showed that in T. brucei the TPR structural motifs, highly conserved between the studied orthologs, are critical for TTC29 axonemal localization and flagellar beating. Overall our work demonstrates that TTC29 is a conserved axonemal protein required for flagellar structure and beating and that TTC29 mutations are a cause of male sterility due to MMAF.


Assuntos
Astenozoospermia/etiologia , Axonema/patologia , Flagelos/patologia , Infertilidade Masculina/etiologia , Proteínas Associadas aos Microtúbulos/genética , Mutação , Animais , Astenozoospermia/metabolismo , Astenozoospermia/patologia , Axonema/genética , Axonema/metabolismo , Evolução Molecular , Feminino , Fertilização in vitro , Flagelos/genética , Flagelos/metabolismo , Humanos , Infertilidade Masculina/metabolismo , Infertilidade Masculina/patologia , Masculino , Camundongos Endogâmicos C57BL , Trypanosoma brucei brucei/fisiologia , Tripanossomíase
9.
J Cell Physiol ; 234(7): 11780-11791, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30515787

RESUMO

SWI/SNF chromatin remodeling enzymes are multisubunit complexes that contain one of two catalytic subunits, BRG1 or BRM and 9-11 additional subunits called BRG1 or BRM-associated factors (BAFs). BRG1 interacts with the microphthalmia-associated transcription factor (MITF) and is required for melanocyte development in vitro and in vivo. The subunits of SWI/SNF that mediate interactions between BRG1 and MITF have not been elucidated. Three mutually exclusive isoforms of a 60-kDa subunit (BAF60A, B, or C) often facilitate interactions with transcription factors during lineage specification. We tested the hypothesis that a BAF60 subunit promotes interactions between MITF and the BRG1-containing SWI/SNF complex. We found that MITF can physically interact with BAF60A, BAF60B, and BAF60C. The interaction between MITF and BAF60A required the basic helix-loop-helix domain of MITF. Recombinant BAF60A pulled down recombinant MITF, suggesting that the interaction can occur in the absence of other SWI/SNF subunits and other transcriptional regulators of the melanocyte lineage. Depletion of BAF60A in differentiating melanoblasts inhibited melanin synthesis and expression of MITF target genes. MITF promoted BAF60A recruitment to melanocyte-specific promoters, and BAF60A was required to promote BRG1 recruitment and chromatin remodeling. Thus, BAF60A promotes interactions between MITF and the SWI/SNF complex and is required for melanocyte differentiation.


Assuntos
Diferenciação Celular , Proteínas Cromossômicas não Histona/metabolismo , DNA Helicases/metabolismo , Melanócitos/citologia , Melanócitos/metabolismo , Fator de Transcrição Associado à Microftalmia/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Ciclo Celular , Diferenciação Celular/genética , Regulação da Expressão Gênica , Células HEK293 , Humanos , Melaninas/biossíntese , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Fator de Transcrição Associado à Microftalmia/química , Modelos Biológicos , Oxirredutases/genética , Oxirredutases/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Subunidades Proteicas/metabolismo
10.
Clin Genet ; 94(6): 575-580, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30221343

RESUMO

We report findings from a male fetus of 26 weeks' gestational age with severe isolated intrauterine growth restriction (IUGR). Chromosomal microarray analysis (CMA) on amniotic fluid cells revealed a 1.06-Mb duplication in 19q13.42 inherited from the healthy father. This duplication contains 34 genes including ZNF331, a gene encoding a zinc-finger protein specifically imprinted (paternally expressed) in the placenta. Study of the ZNF331 promoter by methylation-specific-multiplex ligation-dependent probe amplification showed that the duplicated allele was not methylated in the fetus unlike in the father's genome, suggesting both copies of the ZNF331 gene are expressed in the fetus. The anti-ZNF331 immunohistochemical analysis confirmed that ZNF331 was expressed at higher levels in renal and placental tissues from this fetus compared to controls. Interestingly, ZNF331 expression levels in the placenta have previously been reported to inversely correlate with fetal growth parameters. The original observation presented in this report showed that duplication of ZNF331 could be a novel genetic cause of isolated IUGR and underlines the usefulness of CMA to investigate the genetic causes of isolated severe IUGR.


Assuntos
Cromossomos Humanos Par 19 , Retardo do Crescimento Fetal/diagnóstico , Retardo do Crescimento Fetal/genética , Duplicação Gênica , Estudos de Associação Genética , Predisposição Genética para Doença , Impressão Genômica , Adulto , Biópsia , Proteínas de Ligação a DNA/genética , Epigênese Genética , Feminino , Estudos de Associação Genética/métodos , Testes Genéticos , Humanos , Imuno-Histoquímica , Proteínas de Neoplasias/genética , Gravidez , Ultrassonografia Pré-Natal
11.
Mol Reprod Dev ; 85(8-9): 682-695, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30118583

RESUMO

Members of the solute carrier 26 (SLC26) family have emerged as important players in mediating anions fluxes across the plasma membrane of epithelial cells, in cooperation with the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. Among them, SLC26A3 acts as a chloride/bicarbonate exchanger, highly expressed in the gastrointestinal, pancreatic and renal tissues. In humans, mutations in the SLC26A3 gene were shown to induce congenital chloride-losing diarrhea (CLD), a rare autosomal recessive disorder characterized by life-long secretory diarrhea. In view of some reports indicating subfertility in some male CLD patients together with SLC26-A3 and -A6 expression in the male genital tract and sperm cells, we analyzed the male reproductive parameters and functions of SLC26A3 deficient mice, which were previously reported to display CLD gastro-intestinal features. We show that in contrast to Slc26a6, deletion of Slc26a3 is associated with severe lesions and abnormal cytoarchitecture of the epididymis, together with sperm quantitative, morphological and functional defects, which altogether compromised male fertility. Overall, our work provides new insight into the pathophysiological mechanisms that may alter the reproductive functions and lead to male subfertility in CLD patients, with a phenotype reminiscent of that induced by CFTR deficiency in the male genital tract.


Assuntos
Antiporters/metabolismo , Epididimo/metabolismo , Epididimo/fisiopatologia , Fertilização , Infertilidade Masculina/metabolismo , Capacitação Espermática , Transportadores de Sulfato/metabolismo , Animais , Antiporters/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Diarreia/congênito , Diarreia/etiologia , Masculino , Erros Inatos do Metabolismo/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Fenótipo , Contagem de Espermatozoides , Motilidade dos Espermatozoides , Espermatozoides/patologia , Transportadores de Sulfato/genética , Testículo/fisiopatologia
12.
Am J Hum Genet ; 102(4): 636-648, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29606301

RESUMO

The multiple morphological abnormalities of the flagella (MMAF) phenotype is among the most severe forms of sperm defects responsible for male infertility. The phenotype is characterized by the presence in the ejaculate of immotile spermatozoa with severe flagellar abnormalities including flagella being short, coiled, absent, and of irregular caliber. Recent studies have demonstrated that MMAF is genetically heterogeneous, and genes thus far associated with MMAF account for only one-third of cases. Here we report the identification of homozygous truncating mutations (one stop-gain and one splicing variant) in CFAP69 of two unrelated individuals by whole-exome sequencing of a cohort of 78 infertile men with MMAF. CFAP69 encodes an evolutionarily conserved protein found at high levels in the testis. Immunostaining experiments in sperm from fertile control individuals showed that CFAP69 localized to the midpiece of the flagellum, and the absence of CFAP69 was confirmed in both individuals carrying CFPA69 mutations. Additionally, we found that sperm from a Cfap69 knockout mouse model recapitulated the MMAF phenotype. Ultrastructural analysis of testicular sperm from the knockout mice showed severe disruption of flagellum structure, but histological analysis of testes from these mice revealed the presence of all stages of the seminiferous epithelium, indicating that the overall progression of spermatogenesis is preserved and that the sperm defects likely arise during spermiogenesis. Together, our data indicate that CFAP69 is necessary for flagellum assembly/stability and that in both humans and mice, biallelic truncating mutations in CFAP69 cause autosomal-recessive MMAF and primary male infertility.


Assuntos
Proteínas do Citoesqueleto/genética , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Cauda do Espermatozoide/metabolismo , Cauda do Espermatozoide/patologia , Animais , Axonema/metabolismo , Epididimo/patologia , Epididimo/ultraestrutura , Homozigoto , Humanos , Masculino , Camundongos Knockout , Mutação/genética , Sêmen/metabolismo , Peça Intermédia do Espermatozoide/metabolismo , Cauda do Espermatozoide/ultraestrutura , Espermatogênese , Testículo/patologia , Sequenciamento do Exoma
13.
Nat Commun ; 9(1): 686, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29449551

RESUMO

Spermatogenesis defects concern millions of men worldwide, yet the vast majority remains undiagnosed. Here we report men with primary infertility due to multiple morphological abnormalities of the sperm flagella with severe disorganization of the sperm axoneme, a microtubule-based structure highly conserved throughout evolution. Whole-exome sequencing was performed on 78 patients allowing the identification of 22 men with bi-allelic mutations in DNAH1 (n = 6), CFAP43 (n = 10), and CFAP44 (n = 6). CRISPR/Cas9 created homozygous CFAP43/44 male mice that were infertile and presented severe flagellar defects confirming the human genetic results. Immunoelectron and stimulated-emission-depletion microscopy performed on CFAP43 and CFAP44 orthologs in Trypanosoma brucei evidenced that both proteins are located between the doublet microtubules 5 and 6 and the paraflagellar rod. Overall, we demonstrate that CFAP43 and CFAP44 have a similar structure with a unique axonemal localization and are necessary to produce functional flagella in species ranging from Trypanosoma to human.


Assuntos
Flagelos/fisiologia , Infertilidade Masculina/genética , Proteínas dos Microtúbulos/genética , Mutação , Proteínas Nucleares/genética , Peptídeo Hidrolases/genética , Espermatozoides/fisiologia , Trypanosoma/fisiologia , Adulto , Animais , Axonema , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Estudos de Coortes , Proteínas do Citoesqueleto , Fertilidade , Flagelos/metabolismo , Homozigoto , Humanos , Masculino , Camundongos , Camundongos Knockout , Microscopia Imunoeletrônica , Pessoa de Meia-Idade , Motilidade dos Espermatozoides , Espermatozoides/metabolismo , Sequenciamento do Exoma
14.
Hum Mol Genet ; 27(7): 1196-1211, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29365104

RESUMO

Motile cilia and sperm flagella share an extremely conserved microtubule-based cytoskeleton, called the axoneme, which sustains beating and motility of both organelles. Ultra-structural and/or functional defects of this axoneme are well-known to cause primary ciliary dyskinesia (PCD), a disorder characterized by recurrent respiratory tract infections, chronic otitis media, situs inversus, male infertility and in most severe cases, hydrocephalus. Only recently, mutations in genes encoding axonemal proteins with preferential expression in the testis were identified in isolated male infertility; in those cases, individuals displayed severe asthenozoospermia due to Multiple Morphological Abnormalities of the sperm Flagella (MMAF) but not PCD features. In this study, we performed genetic investigation of two siblings presenting MMAF without any respiratory PCD features, and we report the identification of the c.2018T > G (p.Leu673Pro) transversion in AK7, encoding an adenylate kinase, expressed in ciliated tissues and testis. By performing transcript and protein analyses of biological samples from individual carrying the transversion, we demonstrate that this mutation leads to the loss of AK7 protein in sperm cells but not in respiratory ciliated cells, although both cell types carry the mutated transcript and no tissue-specific isoforms were detected. This work therefore, supports the notion that proteins shared by both cilia and sperm flagella may have specific properties and/or function in each organelle, in line with the differences in their mode of assembly and organization. Overall, this work identifies a novel genetic cause of asthenozoospermia due to MMAF and suggests that in humans, more deleterious mutations of AK7 might induce PCD.


Assuntos
Adenilato Quinase/genética , Transtornos da Motilidade Ciliar/genética , Homozigoto , Infertilidade Masculina/genética , Mutação de Sentido Incorreto , Cauda do Espermatozoide , Adenilato Quinase/metabolismo , Adulto , Transtornos da Motilidade Ciliar/enzimologia , Transtornos da Motilidade Ciliar/patologia , Humanos , Infertilidade Masculina/enzimologia , Infertilidade Masculina/patologia , Masculino
15.
Am J Hum Genet ; 99(2): 489-500, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27486783

RESUMO

Primary ciliary dyskinesia (PCD) is an autosomal-recessive disease due to functional or ultra-structural defects of motile cilia. Affected individuals display recurrent respiratory-tract infections; most males are infertile as a result of sperm flagellar dysfunction. The great majority of the PCD-associated genes identified so far encode either components of dynein arms (DAs), which are multiprotein-ATPase complexes essential for ciliary motility, or proteins involved in DA assembly. To identify the molecular basis of a PCD phenotype characterized by central complex (CC) defects but normal DA structure, a phenotype found in ∼15% of cases, we performed whole-exome sequencing in a male individual with PCD and unexplained CC defects. This analysis, combined with whole-genome SNP genotyping, identified a homozygous mutation in DNAJB13 (c.833T>G), a gene encoding a HSP40 co-chaperone whose ortholog in the flagellated alga Chlamydomonas localizes to the radial spokes. In vitro studies showed that this missense substitution (p.Met278Arg), which involves a highly conserved residue of several HSP40 family members, leads to protein instability and triggers proteasomal degradation, a result confirmed by the absence of endogenous DNAJB13 in cilia and sperm from this individual. Subsequent DNAJB13 analyses identified another homozygous mutation in a second family; the study of DNAJB13 transcripts obtained from airway cells showed that this mutation (c.68+1G>C) results in a splicing defect consistent with a loss-of-function mutation. Overall, this study, which establishes mutations in DNAJB13 as a cause of PCD, unveils the key role played by DNAJB13 in the proper formation and function of ciliary and flagellar axonemes in humans.


Assuntos
Transtornos da Motilidade Ciliar/genética , Proteínas de Choque Térmico/genética , Infertilidade Masculina/genética , Mutação , Adolescente , Proteínas Reguladoras de Apoptose , Axonema/genética , Cílios/genética , Transtornos da Motilidade Ciliar/patologia , Exoma/genética , Feminino , Flagelos/genética , Flagelos/patologia , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico/metabolismo , Homozigoto , Humanos , Infertilidade Masculina/patologia , Síndrome de Kartagener/genética , Masculino , Pessoa de Meia-Idade , Chaperonas Moleculares , Mutação de Sentido Incorreto/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica , Splicing de RNA/genética , Sêmen , Espermatozoides/metabolismo , Espermatozoides/patologia
16.
Reprod Biomed Online ; 31(3): 411-20, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26194886

RESUMO

Traditional medicine has been used worldwide for centuries to cure or prevent disease and for male or female contraception. Only a few studies have directly investigated the effects of herbal compounds on spermatozoa. In this study, essential oil from Thymus munbyanus was extracted and its effect on human spermatozoa in vitro was analysed. Gas chromatography and Gas chromatography-mass spectrometry analyses identified 64 components, accounting for 98.9% of the composition of the oil. The principal components were thymol (52.0%), γ-terpinene (11.0%), ρ-cymene (8.5%) and carvacrol (5.2%). Freshly ejaculated spermatozoa was exposed from control individuals to various doses of the essential oil for different time periods, and recorded the vitality, the mean motility, the movement characteristics (computer-aided sperm analysis), the morphology and the ability to undergo protein hyperphosphorylation and acrosomal reaction, which constitute two markers of sperm capacitation and fertilizing ability. In vitro, both the essential oil extracted from T. munbyanus and thymol, the principal compound present in this oil, impaired human sperm motility and its capacity to undergo hyperphosphorylation and acrosome reaction. These compounds may, therefore, be of interest in the field of reproductive biology, as potential anti-spermatic agents.


Assuntos
Óleos Voláteis/farmacologia , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Timol/farmacologia , Thymus (Planta) , Reação Acrossômica/efeitos dos fármacos , Humanos , Masculino , Capacitação Espermática/efeitos dos fármacos
17.
Dev Biol ; 386(2): 419-27, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24355749

RESUMO

MgcRacGAP (RACGAP1) is a GTPase Activating Protein (GAP), highly produced in the mouse embryonic brain and in the human and mouse post-natal testis. MgcRacGAP negatively controls the activity of Rac and Cdc42, which are key molecular switches acting on the microtubule and actin cytoskeleton and controlling various cell processes such as proliferation, adhesion and motility. Previous studies demonstrated that MgcRacGAP plays a critical role in the cytokinesis of somatic cells; hence homozygous inactivation of the gene in the mouse and mutation in Caenorhabditis elegans led to embryonic lethality due to the inability of MgcRacGAP-null embryos to assemble the central spindle and to complete cytokinesis. In the testis, the germ cells do not complete cytokinesis and remain connected as a syncytium throughout the entire process of spermatogenesis. Interestingly, MgcRacGAP was shown to locate to the intercellular bridges, connecting these germ cells. In order to determine the function(s) of MgcRacGAP in the male germline, we generated a conditional knock-out mouse using Stra8 promoter driven Cre recombinase to induce the specific deletion of MgcRacGAP in the pre-meiotic germ cells. We found that the absence of MgcRacGAP induced a germline depletion and male sterility. Consistent with the role of MgcRacGAP in the establishment of the cytoplasm constriction during cytokinesis of the somatic cells, we observed that MgcRacGAP deletion in the germ cells prevented the formation of the intercellular bridges and induced a proliferation arrest. While we assume that inherited homozygous loss of function mutations in MgcRacGAP would be lethal in human, de novo mutations in the testis might account for some cases of non-obstructive oligo- and/or azoo-spermia syndromes, whose genetic causes are altogether still poorly defined.


Assuntos
Proteínas Ativadoras de GTPase/deficiência , Células Germinativas/química , Infertilidade Masculina/genética , Espermatogênese/fisiologia , Testículo/metabolismo , Animais , Western Blotting , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Masculino , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica , Espermatogênese/genética , Testículo/ultraestrutura
18.
Hum Mol Genet ; 21(6): 1287-98, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22121115

RESUMO

The Slc26 gene family encodes several conserved anion transporters implicated in human genetic disorders, including Pendred syndrome, diastrophic dysplasia and congenital chloride diarrhea. We previously characterized the TAT1 (testis anion transporter 1; SLC26A8) protein specifically expressed in male germ cells and mature sperm and showed that in the mouse, deletion of Tat1 caused male sterility due to a lack of sperm motility, impaired sperm capacitation and structural defects of the flagella. Ca(2+), Cl(-) and HCO(3)(-) influxes trigger sperm capacitation events required for oocyte fertilization; these events include the intracellular rise of cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA)-dependent protein phosphorylation. The cystic fibrosis transmembrane conductance regulator (CFTR) is expressed in mature sperm and has been shown to contribute to Cl(-) and HCO(3)(-) movements during capacitation. Furthermore, several members of the SLC26 family have been described to form complexes with CFTR, resulting in the reciprocal regulation of their activities. We show here that TAT1 and CFTR physically interact and that in Xenopus laevis oocytes and in CHO-K1 cells, TAT1 expression strongly stimulates CFTR activity. Consistent with this, we show that Tat1 inactivation in mouse sperm results in deregulation of the intracellular cAMP content, preventing the activation of PKA-dependent downstream phosphorylation cascades essential for sperm activation. These various results suggest that TAT1 and CFTR may form a molecular complex involved in the regulation of Cl(-) and HCO(3)(-) fluxes during sperm capacitation. In humans, mutations in CFTR and/or TAT1 may therefore be causes of asthenozoospermia and low fertilizing capacity of sperm.


Assuntos
Proteínas de Transporte de Ânions/fisiologia , Antiporters/fisiologia , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Capacitação Espermática/fisiologia , Testículo/metabolismo , Animais , Bicarbonatos/metabolismo , Células COS , Células Cultivadas , Cloretos/metabolismo , Chlorocebus aethiops , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Eletrofisiologia , Humanos , Immunoblotting , Imunoprecipitação , Masculino , Camundongos , Camundongos Transgênicos , Oócitos/citologia , Oócitos/metabolismo , Fosforilação , Motilidade dos Espermatozoides , Transportadores de Sulfato , Testículo/citologia , Xenopus laevis
19.
Traffic ; 12(5): 579-90, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21291504

RESUMO

Rho GTPases, which are master regulators of both the actin cytoskeleton and membrane trafficking, are often hijacked by pathogens to enable their invasion of host cells. Here we report that the cytotoxic necrotizing factor-1 (CNF1) toxin of uropathogenic Escherichia coli (UPEC) promotes Rac1-dependent entry of bacteria into host cells. Our screen for proteins involved in Rac1-dependent UPEC entry identifies the Toll-interacting protein (Tollip) as a new interacting protein of Rac1 and its ubiquitinated forms. We show that knockdown of Tollip reduces CNF1-induced Rac1-dependent UPEC entry. Tollip depletion also reduces the Rac1-dependent entry of Listeria monocytogenes expressing InlB invasion protein. Moreover, knockdown of Tollip, Tom1 and clathrin, decreases CNF1 and Rac1-dependent internalization of UPEC. Finally, we show that Tollip, Tom1 and clathrin associate with Rac1 and localize at the site of bacterial entry. Collectively, these findings reveal a new link between Rac1 and Tollip, Tom1 and clathrin membrane trafficking components hijacked by pathogenic bacteria to allow their efficient invasion of host cells.


Assuntos
Infecções Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Proteínas de Escherichia coli/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Escherichia coli Uropatogênica/metabolismo , Escherichia coli Uropatogênica/patogenicidade , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Linhagem Celular , Endocitose/fisiologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Proteínas/metabolismo , Escherichia coli Uropatogênica/citologia , Proteínas rac1 de Ligação ao GTP/genética
20.
FEBS J ; 277(6): 1453-64, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20148946

RESUMO

The SWI/SNF chromatin remodelling complexes are important regulators of transcription; they consist of large multisubunit assemblies containing either Brm or Brg1 as the catalytic ATPase subunit and a variable subset of approximately 10 Brg/Brm-associated factors (BAF). Among these factors, BAF60 proteins (BAF60a, BAF60b or BAF60c), which are found in most complexes, are thought to bridge interactions between transcription factors and SWI/SNF complexes. We report here on a Rac-dependent process leading to BAF60b ubiquitination. Using two-hybrid cloning procedures, we identified a mammalian RING finger protein homologous to drosophila Unkempt as a new partner of the activated form of RacGTPases and demonstrated that mammalian Unkempt specifically binds to BAF60b and promotes its ubiquitination in a Rac1-dependent manner. Immunofluorescence studies demonstrated that Unkempt is primarily localized in the cytoplasmic compartment, but has the ability to shuttle between the nucleus and the cytoplasm, suggesting that the Rac- and Unkempt-dependent process leading to BAF60b ubiquitination takes place in the nuclear compartment. Ubiquitinated forms of BAF60b were found to accumulate upon treatment with the proteasome inhibitor MG132, indicating that BAF60b ubiquitination is of the degradative type and could regulate the level of BAF60b in SWI/SNF complexes. Our observations support the new idea of a direct connection between Rac signalling and chromatin remodelling.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Proteínas Musculares/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Animais , Sequência de Bases , Células CHO , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Sequência Consenso , Cricetinae , Cricetulus , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Drosophila/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Células HeLa , Humanos , Células Jurkat , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Musculares/química , Proteínas Musculares/genética , Estrutura Terciária de Proteína , Alinhamento de Sequência , Fatores de Transcrição/química , Fatores de Transcrição/genética , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA