Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Macromol Biosci ; 23(3): e2200448, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36519642

RESUMO

The design of bioresorbable vascular stents (BVS) capable of releasing nitric oxide (NO) at the implant site may enable BVS to mimic the antiplatelet, antiproliferative, and pro-endothelial actions of NO, overcoming complications of BVS such as late thrombosis and restenosis. In this study, the fabrication of BVS composed of methacrylated poly(dodecanediol citrate-co-dodecanediol S-nitroso-mercaptosuccinate) (mP(DC-co-DMSNO)), a novel elastomeric, bioabsorbable, and photocurable copolyester, containing covalently bound S-nitrosothiol groups in the carbon backbone of the polymer, is reported. The mP(DC-co-DMSNO) stents are manufactured via photoinduced 3D printing and allow deployment via a self-expansion process from a balloon catheter. After deployment, hydration of the stents triggers the release of NO, which is maintained during the slow hydrolysis of the polymer. Real-time NO release measurements show that by varying the copolyester composition and the strut geometry of the mP(DC-co-DMSNO) stents, it is possible to modulate their NO release rate in the range of 30-52 pmol min-1 cm-2 . Preliminary biological assays in cell culture show that endothelial cells adhere to the surface of the stents and that NO release favors their endothelization. Thus, mP(DC-co-DMSNO) may emerge as a new platform for the fabrication of advanced BVS.


Assuntos
Implantes Absorvíveis , Stents Farmacológicos , Óxido Nítrico , Células Endoteliais , Resultado do Tratamento , Stents , Impressão Tridimensional , Polímeros
2.
Carbohydr Polym ; 245: 116437, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32718594

RESUMO

This contribution falls within the context of sustainable functional materials. We report on the production of fruit leathers based chiefly on peach pulp, but combined with hydroxypropyl methylcellulose (HPMC) as binding agent and cellulose micro/nanofibrils (CMNF) as fillers. Increased permeability to moisture (from 0.9 to 5.6 g mm kPa-1 h-1m-2) and extensibility (from 10 to 17%) but reduced mechanical resistance (67-2 MPa) and stiffness (1.8 GPa-18 MPa) evidenced the plasticizing effect of peach pulp in HPMC matrix, which was reinforced by CMNF. A ternary mixture design allowed building response surfaces and optimizing leather composition. The laboratory-scale leather production via bench casting was extended to a pilot-scale through continuous casting. The effect of scaling up on the nutritional and sensory features of the peach leather was also depicted. The herein established composition-processing-property correlations are useful to support the large-scale production of peach leather towards applications both as packaging materials and as nutritional leathers.


Assuntos
Antioxidantes/química , Filmes Comestíveis , Frutas/química , Derivados da Hipromelose/química , Prunus persica/química , Umidade , Microfibrilas/química , Peso Molecular , Permeabilidade , Projetos Piloto , Plastificantes/química
3.
Carbohydr Polym ; 185: 105-111, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29421045

RESUMO

In line with the increasing demand for sustainable packaging materials, this contribution aimed to investigate the film-forming properties of hydroxypropyl methylcellulose (HPMC) to correlate its chemical structure with film properties. The roles played by substitution degree (SD) and molecular weight (Mw) on the mechanical and water barrier properties of HPMC films were elucidated. Rheological, thermal, and structural experiments supported such correlations. SD was shown to markedly affect film affinity and barrier to moisture, glass transition, resistance, and extensibility, as hydroxyl substitution lessens the occurrence of polar groups. Mw affected mostly the rheological and mechanical properties of HPMC-based materials. Methocel® E4 M led to films featuring the greatest tensile strength (ca., 67 MPa), stiffness (ca., 1.8 GPa), and extensibility (ca., 17%) and the lowest permeability to water vapor (ca., 0.9 g mm kPa-1 h-1 m-2). These properties, which arise from its longer and less polar chains, are desirable for food packaging materials.

4.
Carbohydr Polym ; 164: 83-91, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28325348

RESUMO

Cutin is the biopolyester that protects the extracellular layer of terrestrial plants against dehydration and environmental stresses. In this work, cutin was extracted from tomato processing waste and cast into edible films having pectin as a binding agent. The influences of cutin/pectin ratio (50/50 and 25/75), film-forming suspension pH, and casting method on phase dispersion, water resistance and affinity, and thermal and mechanical properties of films were investigated. Dynamic light scattering and scanning electron microscopy revealed that cutin phase aggregation was reduced by simply increasing pH. The 50/50 films obtained by casting neutral-pH suspensions presented uniform cutin dispersion within the pectin matrix. Consequently, these films exhibited lower water uptake and solubility than their acidic counterparts. The cutin/pectin films developed here were shown to mimic tomato peel itself with respect to mechanical strength and thermal stability. Such behavior was found to be virtually independent of pH and casting method.


Assuntos
Embalagem de Alimentos , Lipídeos de Membrana/química , Pectinas/química , Solanum lycopersicum/química , Solubilidade
5.
Compr Rev Food Sci Food Saf ; 16(5): 1151-1169, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33371612

RESUMO

Food packaging materials are traditionally expected to contain foodstuffs and protect them from deteriorating agents. Although petroleum-derived polymers have been widely used for this purpose, the rising concern with their nonrenewable and/or nonbiodegradable nature paves the route for the development of greener alternatives, including polysaccharides and polypeptides. The use of these food-grade biomacromolecules, in addition to fruits and vegetables, provides edible packaging with suitable physical-mechanical properties as well as unique sensory and nutritional characteristics. This text reviews the chronological development pathway of films based on fruit and vegetable purees, pomaces, and extracts. Recent advances are extensively reviewed with an emphasis on the role that each film component plays in the resulting materials, whose production methods are examined from a technical standpoint and essential properties are compiled and contrasted to their conventional, synthetic counterparts. Finally, this comprehensive review discusses advantages and limitations of edible films based on fruits and vegetables.

6.
J Nanosci Nanotechnol ; 12(3): 2711-7, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22755113

RESUMO

One of the overall goals of industries is to use packages that do not cause environmental problems at disposal time, but that have the same properties as the conventional ones. The goal of this study is to synthesize edible films based on hydroxypropyl methylcellulose (HPMC) with guava puree and chitosan (CS) nanoparticles. This was divided into two stages, the first is the synthesis of chitosan nanoparticles and the second is the production of the films. For the nanoparticles, average size and zeta potential measurements were performed. The characterizations of mechanical and thermal properties, solubility and water vapor permeability tests were conducted in the films. It was observed that when the nanoparticles were added to HPMC and guava puree films, they improved their mechanical and thermal properties, as well as decreased the films solubility and permeability. The potential application of the films prepared would be in edible films with flavor and odor to extend the shelf life of products.

7.
J Food Sci ; 76(2): N25-9, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21535782

RESUMO

UNLABELLED: The need for biodegradable polymers for packaging has fostered the development of novel, biodegradable polymeric materials from natural sources, as an alternative to reduce amount of waste and environmental impacts. The present investigation involves the synthesis of chitosan nanoparticles-carboxymethylcellulose films, in view of their increasing areas of application in packaging industry. The entire process consists of 2-steps including chitosan nanoparticles preparation and their incorporation in carboxymethylcellulose films. Uniform and stable particles were obtained with 3 different chitosan concentrations. The morphology of chitosan nanoparticles was tested by transmission electron microscopy, revealing the nanoparticles size in the range of 80 to 110 nm. The developed film chitosan nanoparticles-carboxymethylcellulose films were characterized by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis, solubility tests, and mechanical analysis. Improvement of thermal and mechanical properties were observed in films containing nanoparticles, with the best results occurring upon addition of nanoparticles with 110 nm size in carboxymethylcellulose films. PRACTICAL APPLICATION: Carboxymethylcellulose films containing chitosan nanoparticles synthesized and characterized in this article could be a potential material for food and beverage packaging applications products due to the increase mechanical properties and high stability. The potential application of the nanocomposites prepared would be in packaging industry to extend the shelf life of products.


Assuntos
Carboximetilcelulose Sódica/síntese química , Quitosana/síntese química , Embalagem de Alimentos/métodos , Nanopartículas/química , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA