Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Elife ; 122024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38682900

RESUMO

The chromatin-associated protein WD Repeat Domain 5 (WDR5) is a promising target for cancer drug discovery, with most efforts blocking an arginine-binding cavity on the protein called the 'WIN' site that tethers WDR5 to chromatin. WIN site inhibitors (WINi) are active against multiple cancer cell types in vitro, the most notable of which are those derived from MLL-rearranged (MLLr) leukemias. Peptidomimetic WINi were originally proposed to inhibit MLLr cells via dysregulation of genes connected to hematopoietic stem cell expansion. Our discovery and interrogation of small-molecule WINi, however, revealed that they act in MLLr cell lines to suppress ribosome protein gene (RPG) transcription, induce nucleolar stress, and activate p53. Because there is no precedent for an anticancer strategy that specifically targets RPG expression, we took an integrated multi-omics approach to further interrogate the mechanism of action of WINi in human MLLr cancer cells. We show that WINi induce depletion of the stock of ribosomes, accompanied by a broad yet modest translational choke and changes in alternative mRNA splicing that inactivate the p53 antagonist MDM4. We also show that WINi are synergistic with agents including venetoclax and BET-bromodomain inhibitors. Together, these studies reinforce the concept that WINi are a novel type of ribosome-directed anticancer therapy and provide a resource to support their clinical implementation in MLLr leukemias and other malignancies.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Proteína de Leucina Linfoide-Mieloide , Proteínas Nucleares , Ribossomos , Proteína Supressora de Tumor p53 , Humanos , Antineoplásicos/farmacologia , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Ribossomos/efeitos dos fármacos , Ribossomos/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Peptidomiméticos/farmacologia
2.
bioRxiv ; 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37546802

RESUMO

The chromatin-associated protein WD Repeat Domain 5 (WDR5) is a promising target for cancer drug discovery, with most efforts blocking an arginine-binding cavity on the protein called the "WIN" site that tethers WDR5 to chromatin. WIN site inhibitors (WINi) are active against multiple cancer cell types in vitro, the most notable of which are those derived from MLL-rearranged (MLLr) leukemias. Peptidomimetic WINi were originally proposed to inhibit MLLr cells via dysregulation of genes connected to hematopoietic stem cell expansion. Our discovery and interrogation of small molecule WIN site inhibitors, however, revealed that they act in MLLr cell lines to suppress ribosome protein gene (RPG) transcription, induce nucleolar stress, and activate p53. Because there is no precedent for an anti-cancer strategy that specifically targets RPG expression, we took an integrated multi-omics approach to further interrogate the mechanism of action of WINi in MLLr cancer cells. We show that WINi induce depletion of the stock of ribosomes, accompanied by a broad yet modest translational choke and changes in alternative mRNA splicing that inactivate the p53 antagonist MDM4. We also show that WINi are synergistic with agents including venetoclax and BET-bromodomain inhibitors. Together, these studies reinforce the concept that WINi are a novel type of ribosome-directed anti-cancer therapy and provide a resource to support their clinical implementation in MLLr leukemias and other malignancies.

3.
Proc Natl Acad Sci U S A ; 120(1): e2211297120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36574664

RESUMO

WD repeat domain 5 (WDR5) is a core scaffolding component of many multiprotein complexes that perform a variety of critical chromatin-centric processes in the nucleus. WDR5 is a component of the mixed lineage leukemia MLL/SET complex and localizes MYC to chromatin at tumor-critical target genes. As a part of these complexes, WDR5 plays a role in sustaining oncogenesis in a variety of human cancers that are often associated with poor prognoses. Thus, WDR5 has been recognized as an attractive therapeutic target for treating both solid and hematological tumors. Previously, small-molecule inhibitors of the WDR5-interaction (WIN) site and WDR5 degraders have demonstrated robust in vitro cellular efficacy in cancer cell lines and established the therapeutic potential of WDR5. However, these agents have not demonstrated significant in vivo efficacy at pharmacologically relevant doses by oral administration in animal disease models. We have discovered WDR5 WIN-site inhibitors that feature bicyclic heteroaryl P7 units through structure-based design and address the limitations of our previous series of small-molecule inhibitors. Importantly, our lead compounds exhibit enhanced on-target potency, excellent oral pharmacokinetic (PK) profiles, and potent dose-dependent in vivo efficacy in a mouse MV4:11 subcutaneous xenograft model by oral dosing. Furthermore, these in vivo probes show excellent tolerability under a repeated high-dose regimen in rodents to demonstrate the safety of the WDR5 WIN-site inhibition mechanism. Collectively, our results provide strong support for WDR5 WIN-site inhibitors to be utilized as potential anticancer therapeutics.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Neoplasias , Repetições WD40 , Animais , Humanos , Camundongos , Cromatina , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Modelos Animais , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral
4.
NAR Cancer ; 4(1): zcac007, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35252869

RESUMO

Rhabdoid tumors (RT) are rare and deadly pediatric cancers driven by loss of SMARCB1, which encodes the SNF5 component of the SWI/SNF chromatin remodeler. Loss of SMARCB1 is associated with a complex set of phenotypic changes including vulnerability to inhibitors of protein synthesis and of the p53 ubiquitin-ligase HDM2. Recently, we discovered small molecule inhibitors of the 'WIN' site of WDR5, which in MLL-rearranged leukemia cells decrease the expression of a set of genes linked to protein synthesis, inducing a translational choke and causing p53-dependent inhibition of proliferation. Here, we characterize how WIN site inhibitors act in RT cells. As in leukemia cells, WIN site inhibition in RT cells causes the comprehensive displacement of WDR5 from chromatin, resulting in a decrease in protein synthesis gene expression. Unlike leukemia cells, however, the growth response of RT cells to WIN site blockade is independent of p53. Exploiting this observation, we demonstrate that WIN site inhibitor synergizes with an HDM2 antagonist to induce p53 and block RT cell proliferation in vitro. These data reveal a p53-independent action of WIN site inhibitors and forecast that future strategies to treat RT could be based on dual WDR5/HDM2 inhibition.

5.
Sci Rep ; 12(1): 1848, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115608

RESUMO

WDR5 nucleates the assembly of histone-modifying complexes and acts outside this context in a range of chromatin-centric processes. WDR5 is also a prominent target for pharmacological inhibition in cancer. Small-molecule degraders of WDR5 have been described, but most drug discovery efforts center on blocking the WIN site of WDR5, an arginine binding cavity that engages MLL/SET enzymes that deposit histone H3 lysine 4 methylation (H3K4me). Therapeutic application of WIN site inhibitors is complicated by the disparate functions of WDR5, but is generally guided by two assumptions-that WIN site inhibitors disable all functions of WDR5, and that changes in H3K4me drive the transcriptional response of cancer cells to WIN site blockade. Here, we test these assumptions by comparing the impact of WIN site inhibition versus WDR5 degradation on H3K4me and transcriptional processes. We show that WIN site inhibition disables only a specific subset of WDR5 activity, and that H3K4me changes induced by WDR5 depletion do not explain accompanying transcriptional responses. These data recast WIN site inhibitors as selective loss-of-function agents, contradict H3K4me as a relevant mechanism of action for WDR5 inhibitors, and indicate distinct clinical applications of WIN site inhibitors and WDR5 degraders.


Assuntos
Antineoplásicos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Linfoma de Células B/tratamento farmacológico , Sítios de Ligação , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Montagem e Desmontagem da Cromatina , Regulação Neoplásica da Expressão Gênica , Histonas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Linfoma de Células B/genética , Linfoma de Células B/metabolismo , Metilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteólise , Transdução de Sinais , Transcrição Gênica
6.
Oncogene ; 40(20): 3593-3609, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33931740

RESUMO

The SNF5 subunit of the SWI/SNF chromatin remodeling complex has been shown to act as a tumor suppressor through multiple mechanisms, including impairing the ability of the oncoprotein transcription factor MYC to bind chromatin. Beyond SNF5, however, it is unknown to what extent MYC can access additional SWI/SNF subunits or how these interactions affect the ability of MYC to drive transcription, particularly in SNF5-null cancers. Here, we report that MYC interacts with multiple SWI/SNF components independent of SNF5. We show that MYC binds the pan-SWI/SNF subunit BAF155 through the BAF155 SWIRM domain, an interaction that is inhibited by the presence of SNF5. In SNF5-null cells, MYC binds with remaining SWI/SNF components to essential genes, although for a purpose that is distinct from chromatin remodeling. Analysis of MYC-SWI/SNF target genes in SNF5-null cells reveals that they are associated with core biological functions of MYC linked to protein synthesis. These data reveal that MYC can bind SWI/SNF in an SNF5-independent manner and that SNF5 modulates access of MYC to core SWI/SNF complexes. This work provides a framework in which to interrogate the influence of SWI/SNF on MYC function in cancers in which SWI/SNF or MYC are altered.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Neoplasias/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteína SMARCB1/metabolismo , Fatores de Transcrição/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/genética , Células HEK293 , Humanos , Neoplasias/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteína SMARCB1/genética , Fatores de Transcrição/genética
7.
Cell Rep ; 34(3): 108636, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33472061

RESUMO

The chromatin-associated protein WDR5 is a promising pharmacological target in cancer, with most drug discovery efforts directed against an arginine-binding cavity in WDR5 called the WIN site. Despite a clear expectation that WIN site inhibitors will alter the repertoire of WDR5 interaction partners, their impact on the WDR5 interactome remains unknown. Here, we use quantitative proteomics to delineate how the WDR5 interactome is changed by WIN site inhibition. We show that the WIN site inhibitor alters the interaction of WDR5 with dozens of proteins, including those linked to phosphatidylinositol 3-kinase (PI3K) signaling. As proof of concept, we demonstrate that the master kinase PDPK1 is a bona fide high-affinity WIN site binding protein that engages WDR5 to modulate transcription of genes expressed in the G2 phase of the cell cycle. This dataset expands our understanding of WDR5 and serves as a resource for deciphering the action of WIN site inhibitors.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/química , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/genética , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Descoberta de Drogas , Fase G2/genética , Regulação da Expressão Gênica , Células HEK293 , Humanos , Imunoprecipitação , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Modelos Moleculares , Terapia de Alvo Molecular , Ligação Proteica
8.
Elife ; 102021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33416496

RESUMO

The oncoprotein transcription factor MYC is a major driver of malignancy and a highly validated but challenging target for the development of anticancer therapies. Novel strategies to inhibit MYC may come from understanding the co-factors it uses to drive pro-tumorigenic gene expression programs, providing their role in MYC activity is understood. Here we interrogate how one MYC co-factor, host cell factor (HCF)-1, contributes to MYC activity in a human Burkitt lymphoma setting. We identify genes connected to mitochondrial function and ribosome biogenesis as direct MYC/HCF-1 targets and demonstrate how modulation of the MYC-HCF-1 interaction influences cell growth, metabolite profiles, global gene expression patterns, and tumor growth in vivo. This work defines HCF-1 as a critical MYC co-factor, places the MYC-HCF-1 interaction in biological context, and highlights HCF-1 as a focal point for development of novel anti-MYC therapies.


Tumours form when cells lose control of their growth. Usually, cells produce signals that control how much and how often they divide. But if these signals become faulty, cells may grow too quickly or multiply too often. For example, a group of proteins known as MYC proteins activate growth genes in a cell, but too much of these proteins causes cells to grow uncontrollably. With one third of all cancer deaths linked to excess MYC proteins, these molecules could be key targets for anti-cancer drugs. However, current treatments fail to target these proteins. One option for treating cancers linked to MYC proteins could be to target proteins that work alongside MYC proteins, such as the protein HCF-1, which can attach to MYC proteins. To test if HCF-1 could be a potential drug target, Popay et al. first studied how HCF-1 and MYC proteins interacted using specific cancer cells grown in the laboratory. This revealed that when the two proteins connected, they activated genes that trigger rapid cell growth. When these cancer cells were then injected into mice, tumours quickly grew. However, when the MYC and HCF-1 attachments in the cancer cells were disrupted, the tumours shrunk. This suggests that if anti-cancer drugs were able to target HCF-1 proteins, they could potentially reduce or even reverse the growth of tumours. While further research is needed to identify drug candidates, these findings reveal a promising target for treating tumours that stem from over-abundant MYC proteins.


Assuntos
Expressão Gênica , Genes Mitocondriais , Fator C1 de Célula Hospedeira/genética , Biogênese de Organelas , Proteínas Proto-Oncogênicas c-myc/genética , Ribossomos/fisiologia , Animais , Linfoma de Burkitt , Feminino , Fator C1 de Célula Hospedeira/metabolismo , Humanos , Camundongos , Camundongos Nus , Proteínas Proto-Oncogênicas c-myc/metabolismo
9.
Nucleic Acids Res ; 48(6): 2924-2941, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-31996893

RESUMO

WDR5 is a highly-conserved nuclear protein that performs multiple scaffolding functions in the context of chromatin. WDR5 is also a promising target for pharmacological inhibition in cancer, with small molecule inhibitors of an arginine-binding pocket of WDR5 (the 'WIN' site) showing efficacy against a range of cancer cell lines in vitro. Efforts to understand WDR5, or establish the mechanism of action of WIN site inhibitors, however, are stymied by its many functions in the nucleus, and a lack of knowledge of the conserved gene networks-if any-that are under its control. Here, we have performed comparative genomic analyses to identify the conserved sites of WDR5 binding to chromatin, and the conserved genes regulated by WDR5, across a diverse panel of cancer cell lines. We show that a specific cohort of protein synthesis genes (PSGs) are invariantly bound by WDR5, demonstrate that the WIN site anchors WDR5 to chromatin at these sites, and establish that PSGs are bona fide, acute, and persistent targets of WIN site blockade. Together, these data reveal that WDR5 plays a predominant transcriptional role in biomass accumulation and provide further evidence that WIN site inhibitors act to repress gene networks linked to protein synthesis homeostasis.


Assuntos
Regulação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Biossíntese de Proteínas/genética , Sequência de Bases , Sítios de Ligação/genética , Linhagem Celular , Cromatina/metabolismo , Sequência Conservada/genética , Feminino , Humanos , Masculino , Ligação Proteica , Transcrição Gênica , Proteína Supressora de Tumor p53/metabolismo
10.
Proc Natl Acad Sci U S A ; 116(50): 25260-25268, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31767764

RESUMO

The oncoprotein transcription factor MYC is overexpressed in the majority of cancers. Key to its oncogenic activity is the ability of MYC to regulate gene expression patterns that drive and maintain the malignant state. MYC is also considered a validated anticancer target, but efforts to pharmacologically inhibit MYC have failed. The dependence of MYC on cofactors creates opportunities for therapeutic intervention, but for any cofactor this requires structural understanding of how the cofactor interacts with MYC, knowledge of the role it plays in MYC function, and demonstration that disrupting the cofactor interaction will cause existing cancers to regress. One cofactor for which structural information is available is WDR5, which interacts with MYC to facilitate its recruitment to chromatin. To explore whether disruption of the MYC-WDR5 interaction could potentially become a viable anticancer strategy, we developed a Burkitt's lymphoma system that allows replacement of wild-type MYC for mutants that are defective for WDR5 binding or all known nuclear MYC functions. Using this system, we show that WDR5 recruits MYC to chromatin to control the expression of genes linked to biomass accumulation. We further show that disrupting the MYC-WDR5 interaction within the context of an existing cancer promotes rapid and comprehensive tumor regression in vivo. These observations connect WDR5 to a core tumorigenic function of MYC and establish that, if a therapeutic window can be established, MYC-WDR5 inhibitors could be developed as anticancer agents.


Assuntos
Linfoma de Burkitt/metabolismo , Cromatina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Linfoma de Burkitt/genética , Carcinogênese , Linhagem Celular Tumoral , Cromatina/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Nus , Ligação Proteica , Proteínas Proto-Oncogênicas c-myc/genética
11.
Nat Commun ; 10(1): 2014, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31043611

RESUMO

SMARCB1 encodes the SNF5 subunit of the SWI/SNF chromatin remodeler. SNF5 also interacts with the oncoprotein transcription factor MYC and is proposed to stimulate MYC activity. The concept that SNF5 is a coactivator for MYC, however, is at odds with its role as a tumor-suppressor, and with observations that loss of SNF5 leads to activation of MYC target genes. Here, we reexamine the relationship between MYC and SNF5 using biochemical and genome-wide approaches. We show that SNF5 inhibits the DNA-binding ability of MYC and impedes target gene recognition by MYC in cells. We further show that MYC regulation by SNF5 is separable from its role in chromatin remodeling, and that reintroduction of SNF5 into SMARCB1-null cells mimics the primary transcriptional effects of MYC inhibition. These observations reveal that SNF5 antagonizes MYC and provide a mechanism to explain how loss of SNF5 can drive malignancy.


Assuntos
Genes Supressores de Tumor , Proteínas Proto-Oncogênicas c-myc/genética , Tumor Rabdoide/genética , Proteína SMARCB1/metabolismo , Linhagem Celular Tumoral , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina/genética , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Tumor Rabdoide/patologia , Proteína SMARCB1/genética
12.
Cell Rep ; 26(11): 2916-2928.e13, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30865883

RESUMO

The chromatin-associated protein WDR5 is a promising target for pharmacological inhibition in cancer. Drug discovery efforts center on the blockade of the "WIN site" of WDR5, a well-defined pocket that is amenable to small molecule inhibition. Various cancer contexts have been proposed to be targets for WIN site inhibitors, but a lack of understanding of WDR5 target genes and of the primary effects of WIN site inhibitors hampers their utility. Here, by the discovery of potent WIN site inhibitors, we demonstrate that the WIN site links WDR5 to chromatin at a small cohort of loci, including a specific subset of ribosome protein genes. WIN site inhibitors rapidly displace WDR5 from chromatin and decrease the expression of associated genes, causing translational inhibition, nucleolar stress, and p53 induction. Our studies define a mode by which WDR5 engages chromatin and forecast that WIN site blockade could have utility against multiple cancer types.


Assuntos
Cromatina/metabolismo , Inibidores Enzimáticos/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Inibidores Enzimáticos/síntese química , Feminino , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/química , Masculino , Ligação Proteica/efeitos dos fármacos
13.
Mol Cell ; 58(3): 440-52, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25818646

RESUMO

MYC is an oncoprotein transcription factor that is overexpressed in the majority of malignancies. The oncogenic potential of MYC stems from its ability to bind regulatory sequences in thousands of target genes, which depends on interaction of MYC with its obligate partner, MAX. Here, we show that broad association of MYC with chromatin also depends on interaction with the WD40-repeat protein WDR5. MYC binds WDR5 via an evolutionarily conserved "MYC box IIIb" motif that engages a shallow, hydrophobic cleft on the surface of WDR5. Structure-guided mutations in MYC that disrupt interaction with WDR5 attenuate binding of MYC at ∼80% of its chromosomal locations and disable its ability to promote induced pluripotent stem cell formation and drive tumorigenesis. Our data reveal WDR5 as a key determinant for MYC recruitment to chromatin and uncover a tractable target for the discovery of anticancer therapies against MYC-driven tumors.


Assuntos
Carcinogênese/metabolismo , Cromatina/metabolismo , Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Anisotropia , Sítios de Ligação/genética , Carcinogênese/genética , Cromatina/química , Cromatina/genética , Polarização de Fluorescência , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Nus , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Células NIH 3T3 , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas/química , Proteínas/genética , Proteínas Proto-Oncogênicas c-myc/química , Proteínas Proto-Oncogênicas c-myc/genética , Homologia de Sequência de Aminoácidos , Técnicas do Sistema de Duplo-Híbrido
14.
PLoS One ; 8(12): e84185, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24358343

RESUMO

Infection with Human Immunodeficiency Virus Type 1 (HIV-1) induces defects of both cellular and humoral immune responses. Impaired CD4+ T cell help and B cell dysfunction may partially explain the low frequency of broadly neutralizing antibodies in HIV-infected individuals. To understand the extent of B cell dysfunction during HIV infection, we assessed the level of B cell activation at baseline and after stimulation with a variety of antigens. Increased levels of viremia were associated with higher baseline expression of the activation marker CD86 on B cells and with decreased ability of B cells to increase expression of CD86 after in vitro stimulation with inactivated HIV-1. In a series of cell isolation experiments B cell responses to antigen were enhanced in the presence of autologous CD4+ T cells. HIV infected individuals had a higher frequency of PD-1 expression on B cells compared to HIV- subjects and PD-1 blockade improved B cell responsiveness to HIV antigen, suggesting that inhibitory molecule expression during HIV-1 infection may contribute to some of the observed B cell defects. Our findings demonstrate that during chronic HIV infection, B cells are activated and lose full capacity to respond to antigen, but suppression of inhibitory pressures as well as a robust CD4+ T cell response may help preserve B cell function.


Assuntos
Linfócitos B/imunologia , Antígenos HIV/imunologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Viremia/imunologia , Linfócitos B/metabolismo , Antígeno B7-2/metabolismo , Contagem de Linfócito CD4 , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Infecções por HIV/metabolismo , Humanos , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Ativação Linfocitária/imunologia , Receptor de Morte Celular Programada 1/imunologia , Carga Viral , Viremia/metabolismo
15.
J Virol ; 86(8): 4213-21, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22258246

RESUMO

After initiation of antiretroviral therapy (ART), HIV loads and frequencies of HIV epitope-specific immune responses decrease. A diverse virus-specific T cell receptor (TCR) repertoire allows the host to respond to viral epitope diversity, but the effect of antigen reduction as a result of ART on the TCR repertoire of epitope-specific CD8(+) T cell populations has not been well defined. We determined the TCR repertoires of 14 HIV-specific CD8(+) T cell responses from 8 HIV-positive individuals before and after initiation of ART. We used multiparameter flow cytometry to measure the distribution of memory T cell subsets and the surface expression of PD-1 on T cell populations and T cell clonotypes within epitope-specific responses from these individuals. Post-ART, we noted decreases in the frequency of circulating epitope-specific T cells (P = 0.02), decreases in the number of T-cell clonotypes found within epitope-specific T cell receptor repertoires (P = 0.024), and an overall reduction in the amino acid diversity within these responses (P < 0.0001). Despite this narrowing of the T cell response to HIV, the overall hierarchy of dominant T cell receptor clonotypes remained stable compared to that pre-ART. CD8(+) T cells underwent redistributions in memory phenotypes and a reduction in CD38 and PD-1 expression post-ART. Despite extensive remodeling at the structural and phenotypic levels, PD-1 was expressed at higher levels on dominant clonotypes within epitope-specific responses before and after initiation of ART. These data suggest that the antigen burden may maintain TCR diversity and that dominant clonotypes are sensitive to antigen even after dramatic reductions after initiation of ART.


Assuntos
Infecções por HIV/imunologia , HIV/imunologia , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T/imunologia , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/uso terapêutico , Terapia Antirretroviral de Alta Atividade , Epitopos de Linfócito T/imunologia , Variação Genética/efeitos dos fármacos , Variação Genética/imunologia , Infecções por HIV/tratamento farmacológico , Humanos , Epitopos Imunodominantes/imunologia , Memória Imunológica , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia
16.
J Immunol ; 186(12): 6871-85, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21562156

RESUMO

HIV epitope-specific T cell responses are often comprised of clonotypic expansions with distinct functional properties. In HIV(+) individuals, we measured programmed death-1 (PD-1) and IL-7Rα expression, MHC class I tetramer binding, cytokine production, and proliferation profiles of dominant and subdominant TCR clonotypes to evaluate the relationship between the composition of the HIV-specific T cell repertoire and clonotypic phenotype and function. Dominant clonotypes are characterized by higher PD-1 expression and lower C127 expression compared with subdominant clonotypes, and TCR avidity positively correlates with PD-1 expression. At low peptide concentrations, dominant clonotypes fail to survive in culture. In response to stimulation with peptides representing variant epitopes, subdominant clonotypes produce higher relative levels of cytokines and display greater capacity for cross-recognition compared with dominant clonotypes. These data indicate that dominant clonotypes within HIV-specific T cell responses display a phenotype consistent with ongoing exposure to cognate viral epitopes and suggest that cross-reactive, subdominant clonotypes may retain greater capacity to suppress replication of viral variants as well as to survive in the absence of strong antigenic signaling.


Assuntos
Antígenos CD/imunologia , Proteínas Reguladoras de Apoptose/imunologia , Reações Cruzadas/imunologia , HIV-1/imunologia , Subunidade alfa de Receptor de Interleucina-7/imunologia , Linfócitos T/patologia , Linfócitos T/virologia , Apresentação de Antígeno/imunologia , Antígenos CD/análise , Proteínas Reguladoras de Apoptose/análise , Células Clonais/patologia , Células Clonais/virologia , Epitopos de Linfócito T/metabolismo , Infecções por HIV/imunologia , Humanos , Subunidade alfa de Receptor de Interleucina-7/análise , Receptor de Morte Celular Programada 1 , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/imunologia
17.
Blood ; 116(3): 396-405, 2010 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-20424187

RESUMO

Flexibility of the HIV-specific T-cell receptor repertoire is a hallmark of HIV-1 infection. Altered differentiation of HIV-specific CD45RO(+)/CCR7(-) (TemRO) CD8(+) effector-memory T cells into CD45RA(+)/CCR7(-) (TemRA) CD8(+) effector-memory T cells as well as increased expression of the senescence marker CD57 has been frequently observed HIV-1 infection, but the structural relationship between clonal expansion and T-cell differentiation has not been defined. In this study, we demonstrate that HIV-specific clonotypes have differing degrees of TemRA differentiation but always maintain a significant proportion of TemRO-phenotype cells. These data indicate that structural constraints of the TCR/peptide major histocompatibility complex interaction play a central role in the TemRA differentiation of HIV-specific CD8(+) T cells in chronic HIV-1 infection. Clonotypes with a predominantly TemRA phenotype had a substantial fraction of cells without expression of CD57; and in contrast to the high clonotypic variability of TemRA differentiation, expression of CD57 was highly correlated among T-cell clonotypes within epitope-specific responses, indicating TCR-independent expression of CD57 in vivo. Our data highlight the importance of the structural composition of the TCR repertoire for the effector-memory differentiation of the immune response in chronic viral infections and suggest that TCR-dependent and -independent homeostasis shapes the pathogen-specific effector-memory repertoire in vivo.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Infecções por HIV/imunologia , Sequência de Aminoácidos , Antígenos CD57/metabolismo , Diferenciação Celular/imunologia , Células Clonais/imunologia , Células Clonais/patologia , Infecções por HIV/patologia , HIV-1 , Humanos , Memória Imunológica , Antígenos Comuns de Leucócito/metabolismo , Dados de Sequência Molecular , Fenótipo , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores CCR7/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/patologia
18.
J Virol ; 84(1): 131-40, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19828602

RESUMO

During chronic viral infections, T cells are exhausted due to constant antigen exposure and are associated with enhanced programmed death 1 (PD-1) expression. Deficiencies in the PD-1/programmed death-ligand 1 (PD-L1) pathway are associated with autoimmune diseases, including those of the central nervous system (CNS). To understand the role of PD-1 expression in regulating T-cell immunity in the CNS during chronic infection, we characterized PD-1 expression in cerebrospinal fluid (CSF) and blood of individuals with chronic human immunodeficiency virus type 1 (HIV-1) infection. PD-1 expression was higher on HIV-specific CD8(+) T cells than on total CD8(+) T cells in both CSF and blood. PD-1 expression on CSF T cells correlated positively with CSF HIV-1 RNA and inversely with blood CD4(+) T-cell counts, suggesting that HIV-1 infection drives higher PD-1 expression on CSF T cells. However, in every HIV-positive individual, PD-1 expression was higher on T cells in CSF than on those in blood, despite HIV-1 RNA levels being lower. Among healthy HIV-negative controls, PD-1 expression was higher in CSF than in blood. Furthermore, frequencies of the senescence marker CD57 were lower on CSF T cells than on blood T cells, consistent with our prior observation of enhanced ex vivo functional capacity of CSF T cells. The higher PD-1 expression level on CSF T cells therefore does not reflect cellular exhaustion but may be a mechanism to downregulate immune-mediated tissue damage in the CNS. As inhibition of the PD-1/PD-L1 pathway is pursued as a therapeutic option for viral infections, potential effects of such a blockade on development of autoimmune responses in the CNS should be considered.


Assuntos
Antígenos CD/genética , Proteínas Reguladoras de Apoptose/genética , Regulação da Expressão Gênica/imunologia , Infecções por HIV/imunologia , Linfócitos T/metabolismo , Antígenos CD/líquido cefalorraquidiano , Proteínas Reguladoras de Apoptose/líquido cefalorraquidiano , Células Sanguíneas/imunologia , Linfócitos T CD4-Positivos/patologia , Antígenos CD57/análise , Linfócitos T CD8-Positivos/química , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/virologia , Estudos de Casos e Controles , Senescência Celular , Sistema Nervoso Central/imunologia , Líquido Cefalorraquidiano/imunologia , Doença Crônica , Humanos , Receptor de Morte Celular Programada 1 , RNA Viral/análise , Linfócitos T/virologia
19.
J Immunol ; 181(7): 5137-46, 2008 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-18802118

RESUMO

The role of epitope-specific TCR repertoire diversity in the control of HIV-1 viremia is unknown. Further analysis at the clonotype level is important for understanding the structural aspects of the HIV-1 specific repertoire that directly relate to CTL function and ability to suppress viral replication. In this study, we performed in-depth analysis of T cell clonotypes directed against a dominantly recognized HLA B57-restricted epitope (KAFSPEVIPMF; KF11) and identified common usage of the TCR beta-chain TRBV7 in eight of nine HLA B57 subjects examined, regardless of HLA B57 subtype. Despite this convergent TCR gene usage, structural and functional assays demonstrated no substantial difference in functional or structural avidity between TRBV7 and non-TRBV7 clonotypes and this epitopic peptide. In a subject where TRBV7-usage did not confer cross-reactivity against the dominant autologous sequence variant, another circulating TCR clonotype was able to preferentially recognize the variant peptide. These data demonstrate that despite selective recruitment of TCR for a conserved epitope over the course of chronic HIV-1 infection, TCR repertoire diversity may benefit the host through the ability to recognize circulating epitope variants.


Assuntos
Apresentação de Antígeno/genética , Linfócitos T CD8-Positivos/imunologia , Rearranjo Gênico da Cadeia beta dos Receptores de Antígenos dos Linfócitos T/genética , Variação Genética/imunologia , Antígenos HLA-B/imunologia , Epitopos Imunodominantes/genética , Região Variável de Imunoglobulina/genética , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Apresentação de Antígeno/imunologia , Linfócitos T CD8-Positivos/metabolismo , Doença Crônica , Células Clonais , Proteína do Núcleo p24 do HIV/sangue , Proteína do Núcleo p24 do HIV/genética , Infecções por HIV/imunologia , HIV-1/imunologia , HIV-1/patogenicidade , Antígenos HLA-B/genética , Antígenos HLA-B/metabolismo , Humanos , Epitopos Imunodominantes/sangue , Epitopos Imunodominantes/imunologia , Região Variável de Imunoglobulina/biossíntese , Região Variável de Imunoglobulina/sangue , Ligação Proteica/genética , Ligação Proteica/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/sangue
20.
J Virol ; 82(21): 10418-28, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18715919

RESUMO

During untreated human immunodeficiency virus type 1 (HIV-1) infection, virus-specific CD8(+) T cells partially control HIV replication in peripheral lymphoid tissues, but host mechanisms of HIV control in the central nervous system (CNS) are incompletely understood. We characterized HIV-specific CD8(+) T cells in cerebrospinal fluid (CSF) and peripheral blood among seven HIV-positive antiretroviral therapy-naïve subjects. All had grossly normal brain magnetic resonance imaging and spectroscopy and normal neuropsychometric testing. Frequencies of epitope-specific CD8(+) T cells by direct tetramer staining were on average 2.4-fold higher in CSF than in blood (P = 0.0004), while HIV RNA concentrations were lower. Cells from CSF were readily expanded ex vivo and responded to a broader range of HIV-specific human leukocyte antigen class I restricted optimal peptides than did expanded cells from blood. HIV-specific CD8(+) T cells, in contrast to total CD8(+) T cells, in CSF and blood were at comparable maturation states, as assessed by CD45RO and CCR7 staining. The strong relationship between higher T-cell frequencies and lower levels of viral antigen in CSF could be the result of increased migration to and/or preferential expansion of HIV-specific T cells within the CNS. This suggests an important role for HIV-specific CD8(+) T cells in control of intrathecal viral replication.


Assuntos
Sangue/imunologia , Linfócitos T CD8-Positivos/imunologia , Líquido Cefalorraquidiano/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Adulto , Sangue/virologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Linfócitos T CD8-Positivos/química , Proliferação de Células , Líquido Cefalorraquidiano/virologia , Humanos , Interferon gama/biossíntese , Antígenos Comuns de Leucócito/análise , RNA Viral/sangue , RNA Viral/líquido cefalorraquidiano , Radiografia , Receptores CCR7/análise , Carga Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA