RESUMO
Daily weather reconstructions (called "reanalyses") can help improve our understanding of meteorology and long-term climate changes. Adding undigitized historical weather observations to the datasets that underpin reanalyses is desirable; however, time requirements to capture those data from a range of archives is usually limited. Southern Weather Discovery is a citizen science data rescue project that recovered tabulated handwritten meteorological observations from ship log books and land-based stations spanning New Zealand, the Southern Ocean, and Antarctica. We describe the Zooniverse-hosted Southern Weather Discovery campaign, highlight promotion tactics, and replicate keying levels needed to obtain 100% complete transcribed datasets with minimal type 1 and type 2 transcription errors. Rescued weather observations can augment optical character recognition (OCR) text recognition libraries. Closer links between citizen science data rescue and OCR-based scientific data capture will accelerate weather reconstruction improvements, which can be harnessed to mitigate impacts on communities and infrastructure from weather extremes.
RESUMO
Our study on the exact timing and the potential climatic, environmental, and evolutionary consequences of the Laschamps Geomagnetic Excursion has generated the hypothesis that geomagnetism represents an unrecognized driver in environmental and evolutionary change. It is important for this hypothesis to be tested with new data, and encouragingly, none of the studies presented by Picin et al. undermine our model.
RESUMO
Our paper about the impacts of the Laschamps Geomagnetic Excursion 42,000 years ago has provoked considerable scientific and public interest, particularly in the so-called Adams Event associated with the initial transition of the magnetic poles. Although we welcome the opportunity to discuss our new ideas, Hawks' assertions of misrepresentation are especially disappointing given his limited examination of the material.
RESUMO
Geological archives record multiple reversals of Earth's magnetic poles, but the global impacts of these events, if any, remain unclear. Uncertain radiocarbon calibration has limited investigation of the potential effects of the last major magnetic inversion, known as the Laschamps Excursion [41 to 42 thousand years ago (ka)]. We use ancient New Zealand kauri trees (Agathis australis) to develop a detailed record of atmospheric radiocarbon levels across the Laschamps Excursion. We precisely characterize the geomagnetic reversal and perform global chemistry-climate modeling and detailed radiocarbon dating of paleoenvironmental records to investigate impacts. We find that geomagnetic field minima ~42 ka, in combination with Grand Solar Minima, caused substantial changes in atmospheric ozone concentration and circulation, driving synchronous global climate shifts that caused major environmental changes, extinction events, and transformations in the archaeological record.
RESUMO
Rapid changes observed today in mountain glaciers need to be put into a longer-term context to understand global sea-level contributions, regional climate-glacier systems and local landscape evolution. In this study we determined volume changes for 400 mountain glaciers across the Southern Alps, New Zealand for three time periods; pre-industrial "Little Ice Age (LIA)" to 1978, 1978 to 2009 and 2009 to 2019. At least 60 km3 ± 12 km3 or between 41 and 62% of the LIA total ice volume has been lost. The rate of mass loss has nearly doubled from - 0.4 m w.e year-1 during 1,600 to 1978 to - 0.7 m w.e year-1 at present. In comparison Patagonia has lost just 11% of it's LIA volume. Glacier ice in the Southern Alps has become restricted to higher elevations and to large debris-covered ablation tongues terminating in lakes. The accelerating rate of ice loss reflects regional-specific climate conditions and suggests that peak glacial meltwater production is imminent if not already passed, which has profound implications for water resources and riverine habitats.
RESUMO
The southwest Pacific (SWP) region is vulnerable to tropical cyclone (TC) related impacts which adversely affect people, infrastructure and economies across several nations and territories. Skilful TC outlooks are needed for this region, but the erratic nature of SWP TCs and the complex ocean-atmosphere interactions that influence TC behaviour on seasonal timescales presents significant challenges. Here, we present a new TC outlook tool for the SWP using multivariate Poisson regression with indices of multiple climate modes. This approach provides skilful, island-scale TC count outlooks from July (four months ahead of the official TC season start in November). Monthly island-scale TC frequency outlooks are generated between July and December, enabling continuous refinement of predicted TC counts before and during a TC season. Use of this approach in conjunction with other seasonal climate guidance (including dynamical models) has implications for preparations ahead of severe weather events, resilience and risk reduction.
RESUMO
Glaciers experienced worldwide retreat during the twentieth and early twenty first centuries, and the negative trend in global glacier mass balance since the early 1990s is predominantly a response to anthropogenic climate warming. The exceptional terminus advance of some glaciers during recent global warming is thought to relate to locally specific climate conditions, such as increased precipitation. In New Zealand, at least 58 glaciers advanced between 1983 and 2008, and Franz Josef and Fox glaciers advanced nearly continuously during this time. Here we show that the glacier advance phase resulted predominantly from discrete periods of reduced air temperature, rather than increased precipitation. The lower temperatures were associated with anomalous southerly winds and low sea surface temperature in the Tasman Sea region. These conditions result from variability in the structure of the extratropical atmospheric circulation over the South Pacific. While this sequence of climate variability and its effect on New Zealand glaciers is unusual on a global scale, it remains consistent with a climate system that is being modified by humans.