Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Clin Transl Allergy ; 14(2): e12339, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38342758

RESUMO

BACKGROUND: Allergic diseases, including respiratory and food allergies, as well as allergic skin conditions have surged in prevalence in recent decades. In allergic diseases, the gut microbiome is dysbiotic, with reduced diversity of beneficial bacteria and increased abundance of potential pathogens. Research findings suggest that the microbiome, which is highly influenced by environmental and dietary factors, plays a central role in the development, progression, and severity of allergic diseases. The microbiome generates metabolites, which can regulate many of the host's cellular metabolic processes and host immune responses. AIMS AND METHODS: Our goal is to provide a narrative and comprehensive literature review of the mechanisms through which microbial metabolites regulate host immune function and immune metabolism both in homeostasis and in the context of allergic diseases. RESULTS AND DISCUSSION: We describe key microbial metabolites such as short-chain fatty acids, amino acids, bile acids and polyamines, elucidating their mechanisms of action, cellular targets and their roles in regulating metabolism within innate and adaptive immune cells. Furthermore, we characterize the role of bacterial metabolites in the pathogenesis of allergic diseases including allergic asthma, atopic dermatitis and food allergy. CONCLUSION: Future research efforts should focus on investigating the physiological functions of microbiota-derived metabolites to help develop new diagnostic and therapeutic interventions for allergic diseases.

2.
Allergy Asthma Immunol Res ; 15(6): 705-724, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37957791

RESUMO

Allergic diseases are a major public health problem with increasing prevalence. These immune-mediated diseases are characterized by defective epithelial barriers, which are explained by the epithelial barrier theory and continuously emerging evidence. Environmental exposures (exposome) including global warming, changes and loss of biodiversity, pollution, pathogens, allergens and mites, laundry and dishwasher detergents, surfactants, shampoos, body cleaners and household cleaners, microplastics, nanoparticles, toothpaste, enzymes and emulsifiers in processed foods, and dietary habits are responsible for the mucosal and skin barrier disruption. Exposure to barrier-damaging agents causes epithelial cell injury and barrier damage, colonization of opportunistic pathogens, loss of commensal bacteria, decreased microbiota diversity, bacterial translocation, allergic sensitization, and inflammation in the periepithelial area. Here, we review scientific evidence on the environmental components that impact epithelial barriers and microbiome composition and their influence on asthma and allergic diseases. We also discuss the historical overview of allergic diseases and the evolution of the hygiene hypothesis with theoretical evidence.

3.
World Allergy Organ J ; 16(6): 100786, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37332524

RESUMO

Background/Aims: Flagellin, which is abundant in gram-negative bacteria, including Pseudomonas, is reported to influence on inflammatory responses in various lung diseases. However, its effect on airway epithelial cells in contribution to asthma pathogenesis is not elucidated yet. We aimed to investigate the effect of TLR5 ligand flagellin on the transcriptomic profile of primary human epithelial cells and to determine the markers of airway inflammation. Methods: Normal human bronchial epithelial (NHBE) cells were grown and differentiated in air-liquid interface (ALI) culture for 14-16 days. The cells were treated with flagellin in vitro at 10 and 100 ng/ml for 3 and 24 h. The conditioned media and cells were harvested to validate inflammatory markers involved in airway inflammation using ELISA, Western blot, and quantitative PCR methods. RNA-sequencing was performed to investigate the transcriptional response to flagellin in ALI-NHBE cells. Results: Altered transcriptional responses to flagellin in differentiated bronchial epithelial cells were determined, including genes encoding chemokines, matrix metalloproteinases, and antimicrobial biomolecules. Pathway analysis of the transcriptionally responsive genes revealed enrichment of signaling pathways. Flagellin induced the mRNA expressions of proinflammatory cytokines and chemokines, and secretion of GM-CSF, CXCL5, CCL5 and CXCL10. Flagellin enhanced the protein expression of MMP-13 in TGF-ß1 and TGF-ß2 pretreated cell lysates and Wnt/ß-catenin signaling. Conclusions: These findings suggest that flagellin could be a potent inducer of inflammatory markers that may contribute to airway inflammation and remodeling.

4.
Respir Med ; 208: 107118, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36641058

RESUMO

Microbiome primes host innate immunity in utero and play fundamental roles in the development, training, and function of the immune system throughout the life. Interplay between the microbiome and immune system maintains mucosal homeostasis, while alterations of microbial community dysregulate immune responses, leading to distinct phenotypic features of immune-mediated diseases including asthma. Microbial imbalance within the mucosal environments, including upper and lower airways, skin, and gut, has consistently been observed in asthma patients and linked to increased asthma exacerbations and severity. Microbiome research has increased to uncover hidden microbial members, function, and immunoregulatory effects of bacterial metabolites within the mucosa. This review provides an overview of environmental and genetic factors that modulate the composition and function of the microbiome, and the impacts of microbiome metabolites and skin microbiota on immune regulation in asthma.


Assuntos
Asma , Microbiota , Humanos , Sistema Imunitário , Sistema Respiratório , Imunidade Inata
5.
Asia Pac Allergy ; 12(4): e45, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36452016

RESUMO

Allergen-specific immunotherapy (AIT) is considered the only curative treatment for allergic diseases mediated by immunoglobulin E (IgE). Currently, the route of administration depends both on the different types of causal allergens and on its effectiveness and safety profile. Several studies have reported the mechanisms and changes in humoral and cellular response underlying AIT; however, the full picture remains unknown. Knowledge of who can benefit from this type of treatment is urgently needed due to the patient safety risks and costs of AIT. In vivo or in vitro biomarkers have become a strategy to predict clinical outcomes in precision medicine. There are currently no standardized biomarkers that allow determining successful responses to AIT, however, some studies have found differences between responders and nonresponders. In addition, different candidates have been postulated that may have the potential to become biomarkers. In this review, we aim to summarize the findings to date related to biomarkers in different IgE-mediated allergic diseases (respiratory, food, and venom allergy) with the potential to define who will benefit from AIT.

6.
Asia Pac Allergy ; 12(3): e32, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35966153

RESUMO

Individual studies have suggested that upper airway dysbiosis may be associated with asthma or its severity. We aimed to systematically review studies that evaluated upper airway bacterial microbiota in relation to asthma, compared to nonasthmatic controls. Searches used MEDLINE, Embase, and Web of Science Core Collection. Eligible studies included association between asthma and upper airway dysbiosis; assessment of composition and diversity of upper airway microbiota using 16S rRNA or metagenomic sequencing; upper airway samples from nose, nasopharynx, oropharynx or hypopharynx. Study quality was assessed and rated using the Newcastle-Ottawa scale. A total of 249 publications were identified; 17 in the final analysis (13 childhood asthma and 4 adult asthma). Microbiome richness was measured in 6 studies, species diversity in 12, and bacterial composition in 17. The quality of evidence was good and fair. The alpha-diversity was found to be higher in younger children with wheezing and asthma, while it was lower when asthmatic children had rhinitis or mite sensitization. In children, Proteobacteria and Firmicutes were higher in asthmatics compared to controls (7 studies), and Moraxella, Streptococcus, and Haemophilus were predominant in the bacterial community. In pooled analysis, nasal Streptococcus colonization was associated with the presence of wheezing at age 5 (p = 0.04). In adult patients with asthma, the abundance of Proteobacteria was elevated in the upper respiratory tract (3 studies). Nasal colonization of Corynebacterium was lower in asthmatics (2 studies). This study demonstrates the potential relationships between asthma and specific bacterial colonization in the upper airway in adult and children with asthma.

8.
Immune Netw ; 22(2): e15, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35573147

RESUMO

Foreign molecules, including viruses and bacteria-derived toxins, can also induce airway inflammation. However, to the best of our knowledge, the roles of these molecules in the development of airway inflammation have not been fully elucidated. Herein, we investigated the precise role and synergistic effect of virus-mimicking double-stranded RNA (dsRNA) and staphylococcal enterotoxin B (SEB) in macrophages and epithelial cells. To identify cytokine expression profiles, both the THP-1-derived macrophages and BEAS-2B epithelial cells were stimulated with dsRNA or SEB. A total of 21 cytokines were evaluated in the culture supernatants. We observed that stimulation with dsRNA induced cytokine production in both cell types. However, cytokine production was not induced in SEB-stimulated epithelial cells, compared to the macrophages. The synergistic effect of dsRNA and SEB was evaluated observing cytokine level and intracellular phospho-signaling. Fifteen different types were detected in high-dose dsRNA-stimulated epithelial cells, and 12 distinct types were detected in macrophages; those found in macrophages lacked interferon production compared to the epithelial cells. Notably, a synergistic effect of cytokine induction by co-stimulation of dsRNA and SEB was observed mainly in epithelial cells, via activation of most intracellular phosphor-signaling. However, macrophages only showed an accumulative effect. This study showed that the type and severity of cytokine productions from the epithelium or macrophages could be affected by different intensities and a combination of dsRNA and SEB. Further studies with this approach may improve our understanding of the development and exacerbation of airway inflammation and asthma.

9.
Immune Netw ; 21(3): e19, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34277109

RESUMO

Clinical and molecular phenotypes of asthma are complex. The main phenotypes of adult asthma are characterized by eosinophil and/or neutrophil cell dominant airway inflammation that represent distinct clinical features. Upper and lower airways constitute a unique system and their interaction shows functional complementarity. Although human upper airway contains various indigenous commensals and opportunistic pathogenic microbiome, imbalance of this interactions lead to pathogen overgrowth and increased inflammation and airway remodeling. Competition for epithelial cell attachment, different susceptibilities to host defense molecules and antimicrobial peptides, and the production of proinflammatory cytokine and pattern recognition receptors possibly determine the pattern of this inflammation. Exposure to environmental factors, including infection, air pollution, smoking is commonly associated with asthma comorbidity, severity, exacerbation and resistance to anti-microbial and steroid treatment, and these effects may also be modulated by host and microbial genetics. Administration of probiotic, antibiotic and corticosteroid treatment for asthma may modify the composition of resident microbiota and clinical features. This review summarizes the effect of some environmental factors on the upper respiratory microbiome, the interaction between host-microbiome, and potential impact of asthma treatment on the composition of the upper airway microbiome.

11.
Asia Pac Allergy ; 11(1): e10, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33604280

RESUMO

BACKGROUND: Invariant natural killer T (iNKT) cells are known as the fast responder in allergic inflammation and the source of interleukin (IL)-4, IL-13, and interferon-gamma. Absence of iNKT cells down-regulated thymic stromal lymphopoietin (TSLP) production at the early stage of type 2 immune responses in the airway. However, it has not been reported whether iNKT cells are able to produce TSLP via stimulation of T-cell receptor (TCR). OBJECTIVE: We aimed to evaluate TSLP production from iNKT cells by TCR specific stimulations with anti-CD3/CD28 antibodies and α-galactoceramide (α-GalCer). METHODS: DN32.D3 iNKT cell line was stimulated with anti-CD3/CD28 antibodies, and TSLP production was measured in culture supernatants. Next, to confirm the TSLP production in primary mouse iNKT cells, the cells were sorted using α-GalCer-CD1d tetramer from mouse liver, and stimulated with anti-CD3/CD28 antibodies and α-GalCer. Then, cytokine productions were evaluated by enzyme-linked immunosorbent assay and quantitative polymerase chain reaction. RESULTS: TCR specific stimulation in DN32.D3 cells induced TSLP production as well as signature cytokines of iNKT cells. On the other hand, isolated primary mouse iNKT cells from liver did not show any induction of TSLP by TCR specific stimulations including anti-CD3/CD28 antibodies and α-GalCer, on the contrary to other cytokines. CONCLUSION: This study suggested the possibility of TSLP production in iNKT cells, especially from DN32.D3 although primary mouse liver iNKT cells showed a different result.

12.
Br J Nutr ; 126(6): 844-852, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-33243305

RESUMO

PUFA modulate immune function and have been associated with the risk of childhood atopy and asthma. We investigated the effect of maternal fat intake in mice on PUFA status, elongase and desaturase gene expression, inflammatory markers and lung function in the offspring. C57BL/6J mice (n 32) were fed either standard chow (C, 20·4 % energy as fat) or a high-fat diet (HFD, 39·9 % energy as fat) for 4 weeks prior to conception and during gestation and lactation. At 21 d of age, offspring were weaned onto either the HFD or C, generating four experimental groups: C/C, C/HF, HF/C and HF/HF. Plasma and liver fatty acid composition were measured by GC and gene expression by quantitative PCR. Lung resistance to methacholine was assessed. Arachidonic acid concentrations in offspring plasma and liver phospholipids were increased by HFD; this effect was greater in the post-natal HFD group. DHA concentration in offspring liver phospholipids was increased in response to HFD and was higher in the post-natal HFD group. Post-natal HFD increased hepatic fatty acid desaturase (FADS) 2 and elongation of very long-chain fatty acid 5 expression in male offspring, whereas maternal HFD elevated expression of FADS1 and FADS2 in female offspring compared with males. Post-natal HFD increased expression of IL-6 and C-C motif chemokine ligand 2 (CCL2) in perivascular adipose tissue. The HFD lowered lung resistance to methacholine. Excessive maternal fat intake during development modifies hepatic PUFA status in offspring through regulation of gene expression of enzymes that are involved in PUFA biosynthesis and modifies the development of the offspring lungs leading to respiratory dysfunction.


Assuntos
Dieta Hiperlipídica , Pulmão/fisiopatologia , Fenômenos Fisiológicos da Nutrição Materna , Animais , Ácido Araquidônico/sangue , Dieta Hiperlipídica/efeitos adversos , Feminino , Fígado , Pulmão/efeitos dos fármacos , Masculino , Cloreto de Metacolina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Fosfolipídeos/análise , Gravidez
13.
Genes Nutr ; 14: 20, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31244960

RESUMO

BACKGROUND: Evidence suggests that prenatal exposure to n-3 long-chain polyunsaturated fatty acids (LCPUFA) reduces the incidence of allergic disease in children. LCPUFAs are produced from dietary precursors catalyzed by desaturases and elongases encoded by the FADS1/2 and ELOVL5 genes. DNA methylation regulates gene activity and fatty acid supplementation could alter DNA methylation (DNA-M) at these genes. We investigated whether DNA-M and expression of the FADS1/2 and ELOVL5 genes were associated with allergy in children and gestational fish intake. We studied 170 participants from the Isle of Wight 3rd Generation Cohort, UK. Phenotype data and exposure was assessed by questionnaires. Genome-wide DNA-M in cord blood samples was quantified using the Illumina Infinium HumanMethylation450 and EPIC Beadchips. Five SNPs (single-nucleotide polymorphisms) in the FADS gene cluster and one SNP in ELOVL5 were genotyped in offspring. FADS gene expression in offspring cord blood was determined. RESULTS: Gestational fish intake was significantly associated with increased methylation of cg12517394 (P = 0.049), which positively correlated with FADS1 mRNA levels (P = 0.021). ELOVL5 rs2397142 was significantly associated with eczema (P = 0.011) and methylation at cg11748354 and cg24524396 (P < 0.001 and P = 0.036, respectively). Gestational fish intake was strongly associated with elevated DNA-M at cg11748354 and cg24524396 (P = 0.029 and P = 0.002, respectively) and reduced ELOVL5 mRNA expression (P = 0.028). CONCLUSION: The association between induced FADS1/2 and ELOVL5 DNA-M and reduced gene expression due to gestational fish intake provide a mechanistic explanation of the previously observed association between maternal LCPUFA intake and allergy development in early childhood.

14.
Korean J Intern Med ; 31(2): 375-85, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26701229

RESUMO

BACKGROUND/AIMS: Role of autophagy in neutrophil function and the association of autophagy and autophagy related (ATG) gene polymorphisms with asthma susceptibility were suggested. In this study, we investigated the genetic association of ATG5 and ATG7 polymorphisms with asthma risk, severity and neutrophilic airway inflammation. METHODS: We recruited 408 asthma patients and 201 healthy controls. Sputum neutrophil counts were determined by H&E staining. Serum interleukin 8 (IL-8) levels were measured by enzyme-linked immunosorbent assay (ELISA). Genetic polymorphisms of ATG5 (-769T>C, -335G>A, and 8830C>T) and ATG7 (-100A>G and 25108G>C) were genotyped. The functional activities of ATG5 -769T>C and -335G>A variants were investigated by luciferase reporter assays. RESULTS: No associations of ATG5 and ATG7 polymorphisms with asthma susceptibility and severity were found. ATG5 -769T>C and -335G>A were in complete linkage disequilibrium. In the asthma group, GA/AA genotypes at ATG5 -335G>A were associated with higher neutrophil counts in sputum (p < 0.05); CC/TT genotype at ATG5 8830C>T associated with lower FEV1% predicted value (p < 0.05). DNA fragments containing ATG5 -769T and -335G alleles had higher promoter activities compared to those with -769C and -335A in both human airway epithelial cells (A549, p < 0.01) and human mast cell (HMC-1, p < 0.001). GG and CC genotype at ATG7 -100A>G and 25108G>C were significantly associated with high serum levels of IL-8 (p < 0.05 for both variants). CONCLUSIONS: Genetic polymorphisms of ATG5 and ATG7 could contribute to neutrophilic airway inflammation in the pathogenesis of adult asthma.


Assuntos
Asma/genética , Proteína 5 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/genética , Autofagia/genética , Infiltração de Neutrófilos/genética , Neutrófilos/patologia , Polimorfismo de Nucleotídeo Único , Adolescente , Adulto , Asma/sangue , Asma/imunologia , Asma/patologia , Estudos de Casos e Controles , Linhagem Celular , Feminino , Frequência do Gene , Genes Reporter , Predisposição Genética para Doença , Haplótipos , Heterozigoto , Homozigoto , Humanos , Interleucina-8/sangue , Masculino , Pessoa de Meia-Idade , Neutrófilos/imunologia , Neutrófilos/metabolismo , Fenótipo , Regiões Promotoras Genéticas , Fatores de Risco , Índice de Gravidade de Doença , Transfecção , Adulto Jovem
16.
Allergy Asthma Immunol Res ; 6(1): 13-21, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24404388

RESUMO

Chronic urticaria (CU) is a common allergic skin disease that requires long-term pharmacological treatment. Some patients with severe CU suffer a poor quality of life. Although the pathogenic mechanisms of CU are not clearly understood, several groups have suggested that genetic mechanisms are involved in various CU cohorts. To further understand the molecular genetic mechanisms of CU, we summarize recent genetic data in this review. Although a few HLA alleles were suggested to be candidate markers in different ethnic groups, further replication studies that apply the recent classification are needed. Genetic polymorphisms in histamine-related genes, including FcεRI and HNMT, were suggested to be involved in mast cell activation and histamine metabolism. Several genetic polymorphisms of leukotriene-related genes, such as ALOX5, LTC4S, and the PGE2 receptor gene PTGER4, were suggested to be involved in leukotriene overproduction, a pathogenic mechanism. Further investigations using candidate gene approaches and genome-wide association studies (GWAS) will provide new insights into the molecular genetic mechanisms of CU, which will provide new marker genes for differentiation of CU phenotypes and identification of potential therapeutic targets.

18.
Allergy Asthma Immunol Res ; 5(2): 106-9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23449963

RESUMO

Interleukin 5 (IL-5) is a key cytokine involved in the induction of T-helper type 2 (Th2) responses in the asthmatic airway. We investigated IL-5 genetic polymorphisms associated with asthma phenotypes, including IgE responses to staphylococcal enterotoxins A and B (SEA and SEB, respectively), in asthmatics. Adult asthmatics (n=310) and normal controls (n=160) were enrolled in the present study. Serum total and specific IgE to SEA and SEB were measured. Two IL-5 polymorphisms, -746A>G and +4499T>G, were genotyped using the primer-extension method. There were no significant differences in genotype or haplotype frequencies of these polymorphisms between the two groups. Asthmatics carrying the AG/GG genotype at -746A>G had a significantly higher prevalence of serum specific IgE to SEA (P=0.008), higher total IgE levels (P=0.014), and lower PC20 methacholine levels (P=0.002) compared to those with the AA genotype. These findings suggest that the IL-5 promoter polymorphism at -746A>G enhances serum total and specific IgE responses to SEA, which may augment airway hyperresponsiveness in adult asthmatics.

19.
Exp Mol Med ; 45: e14, 2013 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-23470716

RESUMO

Persistent eosinophil activation in both the upper and lower airway mucosa is a central feature of aspirin-exacerbated respiratory disease (AERD). Eosinophil activation and survival are profoundly influenced by interleukin 5 (IL-5) and its receptor, IL-5R. In patients susceptible to allergic disorders, IL-5 receptor α (IL5RA) polymorphisms have been reported; however, an association with AERD remains unclear. We hypothesize that IL5RA polymorphisms may contribute to eosinophil activation in AERD patients. We recruited 139 AERD patients, 171 aspirin-tolerant asthma patients and 160 normal controls. IL5RA polymorphisms (-5993G>A, -5567C>G and -5091G>A) were genotyped and functional activity of polymorphism was assessed by luciferase reporter assay and electrophoretic mobility shift assay (EMSA). There was no significant difference in the genotype frequency of the three polymorphisms among the three groups. AERD patients carrying the AA genotype at -5993G>A had a significantly higher presence of serum-specific immunoglobulin E (IgE) to staphylococcal enterotoxin A (P=0.008) than those with the GG/GA genotype. In vitro, the -5993A allele had a higher promoter activity compared with the -5993G allele in human mast cell (HMC-1; P=0.030) and human promyelocytic leukemia (HL-60; P=0.013) cells. In EMSA, a -5993A probe produced a specific shifted band than the -5993G had. These findings suggest that a functional polymorphism in IL5RA may contribute to eosinophil and mast cell activation along with specific IgE responses to staphylococcal enterotoxin A in AERD patients.


Assuntos
Aspirina/efeitos adversos , Subunidade alfa de Receptor de Interleucina-5/genética , Polimorfismo de Nucleotídeo Único/genética , Transtornos Respiratórios/induzido quimicamente , Transtornos Respiratórios/genética , Adulto , Ensaio de Desvio de Mobilidade Eletroforética , Feminino , Frequência do Gene/genética , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Transcrição Gênica
20.
Allergy Asthma Immunol Res ; 3(2): 123-7, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21461252

RESUMO

PURPOSE: Although the mechanism of virus-induced, aspirin-exacerbated respiratory disease (AERD) is not known fully, direct activation of viral components through Toll-like receptor 3 (TLR3) has been suggested. TLR3 recognizes double-stranded RNA (dsRNA), and activates nuclear factor-κB and increases interferon-γ, which signals other cells to induce airway inflammation in asthma. Considering the association of TLR3 in viral infections and AERD, we investigated whether promoter and non-synonymous variants of TLR3 were associated with AERD. METHODS: The three study groups, 203 with AERD, 254 with aspirin-tolerant asthma (ATA), and 274 normal healthy controls (NC) were recruited from Ajou University Hospital, Korea. Two polymorphisms, -299698G>T and 293391G>A [Leu412Phe], were genotyped using primer extension methods. RESULTS: Genetic associations were examined between two genetic polymorphisms of TLR3 (-299698G>T and 293391G>A [Leu412Phe]) in the three study groups. AERD patients that carried the GG genotype of 293391G>A showed a significantly lower frequency compared with ATA in both co-dominant (P=0.025) and dominant models (P=0.036). Similarly, in the minor allele frequency, the A allele was significantly higher (P=0.023) in AERD compared with ATA for this polymorphism. AERD patients who carried HT2 [GA] showed a significantly higher frequency than other haplotypes in co-dominant (P=0.02) and recessive (P=0.026) models. CONCLUSIONS: Our findings suggest that the -299698G>T and 293391G>A [Leu412Phe] polymorphisms of the TLR3 gene are associated with the AERD phenotype.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA