Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
ACS Nano ; 18(25): 16091-16100, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38860455

RESUMO

Covalent organic frameworks (COFs) are a class of porous materials whose sorption properties have so far been studied primarily by physisorption. Quantifying the self-diffusion of guest molecules inside their nanometer-sized pores allows for a better understanding of confinement effects or transport limitations and is thus essential for various applications ranging from molecular separation to catalysis. Using a combination of pulsed field gradient nuclear magnetic resonance measurements and molecular dynamics simulations, we have studied the self-diffusion of acetonitrile and chloroform in the 1D pore channels of two imine-linked COFs (PI-3-COF) with different levels of crystallinity and porosity. The higher crystallinity and porosity sample exhibited anisotropic diffusion for MeCN parallel to the pore direction, with a diffusion coefficient of Dpar = 6.1(3) × 10-10 m2 s-1 at 300 K, indicating 1D transport and a 7.4-fold reduction in self-diffusion compared to the bulk liquid. This finding aligns with molecular dynamics simulations predicting 5.4-fold reduction, assuming an offset-stacked COF layer arrangement. In the low-porosity sample, more frequent diffusion barriers result in isotropic, yet significantly reduced diffusivities (DB = 1.4(1) × 10-11 m2 s-1). Diffusion coefficients for chloroform at 300 K in the pores of the high- (Dpar = 1.1(2) × 10-10 m2 s-1) and low-porosity (DB = 4.5(1) × 10-12 m2 s-1) samples reproduce these trends. Our multimodal study thus highlights the significant influence of real structure effects such as stacking faults and grain boundaries on the long-range diffusivity of molecular guest species while suggesting efficient intracrystalline transport at short diffusion times.

2.
J Am Chem Soc ; 146(23): 15701-15717, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38819106

RESUMO

Polar and chiral crystal symmetries confer a variety of potentially useful functionalities upon solids by coupling otherwise noninteracting mechanical, electronic, optical, and magnetic degrees of freedom. We describe two phases of the 3D perovskite, CsSnBr3, which emerge below 85 K due to the formation of Sn(II) lone pairs and their interaction with extant octahedral tilts. Phase II (77 K < T < 85 K, space group P21/m) exhibits ferroaxial order driven by a noncollinear pattern of lone pair-driven distortions within the plane normal to the unique octahedral tilt axis, preserving the inversion symmetry observed at higher temperatures. Phase I (T < 77 K, space group P21) additionally exhibits ferroelectric order due to distortions along the unique tilt axis, breaking both inversion and mirror symmetries. This polar and chiral phase exhibits second harmonic generation from the bulk and pronounced electrostriction and negative thermal expansion along the polar axis (Q22 ≈ 1.1 m4 C-2; αb = -7.8 × 10-5 K-1) through the onset of polarization. The structures of phases I and II were predicted by recursively following harmonic phonon instabilities to generate a tree of candidate structures and subsequently corroborated by synchrotron X-ray powder diffraction and polarized Raman and 81Br nuclear quadrupole resonance spectroscopies. Preliminary attempts to suppress unintentional hole doping to allow for ferroelectric switching are described. Together, the polar symmetry, small band gap, large spin-orbit splitting of Sn 5p orbitals, and predicted strain sensitivity of the symmetry-breaking distortions suggest bulk samples and epitaxial films of CsSnBr3 or its neighboring solid solutions as candidates for bulk Rashba effects.

3.
Inorg Chem ; 63(19): 8698-8709, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38688036

RESUMO

Li3Y1-xInxCl6 undergoes a phase transition from trigonal to monoclinic via an intermediate orthorhombic phase. Although the trigonal yttrium containing the end member phase, Li3YCl6, synthesized by a mechanochemical route, is known to exhibit stacking fault disorder, not much is known about the monoclinic phases of the serial composition Li3Y1-xInxCl6. This work aims to shed light on the influence of the indium substitution on the phase evolution, along with the evolution of stacking fault disorder using X-ray and neutron powder diffraction together with solid-state nuclear magnetic resonance spectroscopy, studying the lithium-ion diffusion. Although Li3Y1-xInxCl6 with x ≤ 0.1 exhibits an ordered trigonal structure like Li3YCl6, a large degree of stacking fault disorder is observed in the monoclinic phases for the x ≥ 0.3 compositions. The stacking fault disorder materializes as a crystallographic intergrowth of faultless domains with staggered layers stacked in a uniform layer stacking, along with faulted domains with randomized staggered layer stacking. This work shows how structurally complex even the "simple" series of solid solutions can be in this class of halide-based lithium-ion conductors, as apparent from difficulties in finding a consistent structural descriptor for the ionic transport.

4.
J Am Chem Soc ; 146(14): 9479-9492, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38547041

RESUMO

Single-site photocatalysts (SSPCs) are well-established as potent platforms for designing innovative materials to accomplish direct solar-to-fuel conversion. Compared to classical inorganic porous materials, such as zeolites and silica, covalent organic frameworks (COFs)─an emerging class of porous polymers that combine high surface areas, structural diversity, and chemical stability─are attractive candidates for SSPCs due to their molecular-level precision and intrinsic light harvesting ability, both amenable to structural engineering. In this Perspective, we summarize the design concepts and state-of-the-art strategies for the construction of COF SSPCs, and we review the development of COF SSPCs and their applications in solar-to-fuel conversion from their inception. Underlying pitfalls concerning photocatalytic characterization are discussed, and perspectives for the future development of this burgeoning field are given.

5.
ACS Nano ; 18(11): 8383-8391, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38437520

RESUMO

Two-dimensional van der Waals (vdW) heterostructures are an attractive platform for studying exchange bias due to their defect-free and atomically flat interfaces. Chromium thiophosphate (CrPS4), an antiferromagnetic material, possesses uncompensated magnetic spins in a single layer, rendering it a promising candidate for exploring exchange bias phenomena. Recent findings have highlighted that naturally oxidized vdW ferromagnetic Fe3GeTe2 exhibits exchange bias, attributed to the antiferromagnetic coupling of its ultrathin surface oxide layer (O-FGT) with the underlying unoxidized Fe3GeTe2. Anomalous Hall measurements are employed to scrutinize the exchange bias within the CrPS4/(O-FGT)/Fe3GeTe2 heterostructure. This analysis takes into account the contributions from both the perfectly uncompensated interfacial CrPS4 layer and the interfacial oxide layer. Intriguingly, a distinct and nonmonotonic exchange bias trend is observed as a function of temperature below 140 K. The occurrence of exchange bias induced by a "preset field" implies that the prevailing phase in the polycrystalline surface oxide is ferrimagnetic Fe3O4. Moreover, the exchange bias induced by the ferrimagnetic Fe3O4 is significantly modulated by the presence of the van der Waals antiferromagnetic CrPS4 layer, forming a heterostructure, along with additional iron oxide phases within the oxide layer. These findings underscore the intricate and complex nature of exchange bias in van der Waals heterostructures, highlighting their potential for tailored manipulation and control.

6.
Adv Mater ; 36(19): e2313197, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38300155

RESUMO

Covalent organic frameworks (COFs) are promising electrocatalyst platforms owing to their designability, porosity, and stability. Recently, COFs with various chemical structures are developed as efficient electrochemical CO2 reduction catalysts. However, controlling the morphology of COF catalysts remains a challenge, which can limit their electrocatalytic performance. Especially, while porphyrin COFs show promising catalytic properties, their particle size is mostly large and uncontrolled because of the severe aggregation of crystallites. In this work, a new synthetic methodology for rationally downsized COF catalyst particles is reported, where a tritylated amine is employed as a novel protected precursor for COF synthesis. Trityl protection provides high solubility to a porphyrin precursor, while its deprotection proceeds in situ under typical COF synthesis conditions. Subsequent homogeneous nucleation and colloidal growth yield smaller COF particles than a conventional synthesis, owing to suppressed crystallite aggregation. The downsized COF particles exhibit superior catalytic performance in electrochemical CO2 reduction, with higher CO production rate and faradaic efficiency compared to conventional COF particles. The improved performance is attributed to the higher contact area with a conductive agent. This study reveals particle size as an important factor for the evaluation of COF electrocatalysts and provides a strategy to control it.

7.
ACS Nano ; 18(5): 4287-4296, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38259041

RESUMO

The reversible formation of hydrogen bonds is a ubiquitous mechanism for controlling molecular assembly in biological systems. However, achieving predictable reversibility in artificial two-dimensional (2D) materials remains a significant challenge. Here, we use an external electric field (EEF) at the solid/liquid interface to trigger the switching of H-bond-linked 2D networks using a scanning tunneling microscope. Assisted by density functional theory and molecular dynamics simulations, we systematically vary the molecule-to-molecule interactions, i.e., the hydrogen-bonding strength, as well as the molecule-to-substrate interactions to analyze the EEF switching effect. By tuning the building block's hydrogen-bonding ability (carboxylic acids vs aldehydes) and substrate nature and charge (graphite, graphene/Cu, graphene/SiO2), we induce or freeze the switching properties and control the final polymorphic output in the 2D network. Our results indicate that the switching ability is not inherent to any particular building block but instead relies on a synergistic combination of the relative adsorbate/adsorbate and absorbate/substrate energetic contributions under surface polarization. Furthermore, we describe the dynamics of the switching mechanism based on the rotation of carboxylic groups and proton exchange, which generate the polarizable species that are influenced by the EEF. This work provides insights into the design and control of reversible molecular assembly in 2D materials, with potential applications in a wide range of fields, including sensors and electronics.

8.
Adv Mater ; 36(15): e2304832, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37669645

RESUMO

Metal-organic frameworks (MOFs) are a rapidly growing class of materials that offer great promise in various applications. However, the synthesis remains challenging: for example, a range of crystal structures can often be accessed from the same building blocks, which complicates the phase selectivity. Likewise, the high sensitivity to slight changes in synthesis conditions may cause reproducibility issues. This is crucial, as it hampers the research and commercialization of affected MOFs. Here, it presents the first-ever interlaboratory study of the synthetic reproducibility of two Zr-porphyrin MOFs, PCN-222 and PCN-224, to investigate the scope of this problem. For PCN-222, only one sample out of ten was phase pure and of the correct symmetry, while for PCN-224, three are phase pure, although none of these show the spatial linker order characteristic of PCN-224. Instead, these samples resemble dPCN-224 (disordered PCN-224), which has recently been reported. The variability in thermal behavior, defect content, and surface area of the synthesised samples are also studied. The results have important ramifications for field of metal-organic frameworks and their crystallization, by highlighting the synthetic challenges associated with a multi-variable synthesis space and flat energy landscapes characteristic of MOFs.

9.
Adv Mater ; 36(12): e2210613, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36930851

RESUMO

Controlled synthesis of phase-pure metal-organic frameworks (MOFs) is essential for their application in technological areas such as catalysis or gas sorption. Yet, knowledge of their phase formation and growth remain rather limited, particularly with respect to species such as water whose vital role in MOF synthesis is often neglected. As a consequence, synthetic protocols often lack reproducibility when multiple MOFs can form from the same metal source and linker, and phase mixtures are obtained with little or no control over their composition. In this work, the role of water in the formation of the Zr-porphyrin MOF disordered PCN-224 (dPCN-224) is investigated. Through X-ray total scattering and scanning electron microscopy, it is observed that dPCN-224 forms via a metal-organic intermediate that consists of Zr6O4(OH)4 clusters linked by tetrakis(4-carboxy-phenyl)porphyrin molecules. Importantly, water is not only essential to the formation of Zr6O4(OH)4 clusters, but it also plays a primary role in dictating the formation kinetics of dPCN-224. This multidisciplinary approach to studying the speciation of dPCN-224 provides a blueprint for how Zr-MOF synthesis protocols can be assessed and their reproducibility increased, and highlights the importance of understanding the role of water as a decisive component in Zr-MOF formation.

10.
Nano Lett ; 23(22): 10126-10131, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37955345

RESUMO

Magnetism in reduced dimensionalities is of great fundamental interest while also providing perspectives for applications of materials with novel functionalities. In particular, spin dynamics in two dimensions (2D) have become a focus of recent research. Here, we report the observation of coherent propagating spin-wave dynamics in a ∼30 nm thick flake of 2D van der Waals ferromagnet Fe5GeTe2 using X-ray microscopy. Both phase and amplitude information were obtained by direct imaging below TC for frequencies from 2.77 to 3.84 GHz, and the corresponding spin-wave wavelengths were measured to be between 1.5 and 0.5 µm. Thus, parts of the magnonic dispersion relation were determined despite a relatively high magnetic damping of the material. Numerically solving an analytic multilayer model allowed us to corroborate the experimental dispersion relation and predict the influence of changes in the saturation magnetization or interlayer coupling, which could be exploited in future applications by temperature control or stacking of 2D-heterostructures.

11.
Angew Chem Int Ed Engl ; 62(50): e202313564, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37905748

RESUMO

Multianionic metal hydrides, which exhibit a wide variety of physical properties and complex structures, have recently attracted growing interest. Here we present Sr6 N[BN2 ]2 H3 , prepared in a solid-state ampoule reaction at 800 °C, as the first combination of nitridoborate, nitride and hydride anions within a single compound. The crystal structure was solved from single-crystal X-ray and neutron powder diffraction data in space group P21 /c (no. 14), revealing a three-dimensional network of undulated layers of nitridoborate units, strontium atoms and hydride together with nitride anions. Magic angle spinning (MAS) NMR and vibrational spectroscopy in combination with quantum chemical calculations further confirm the structure model. Electrochemical measurements suggest the existence of hydride ion conductivity, allowing the hydrides to migrate along the layers.

12.
Chemistry ; 29(55): e202301986, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37436099

RESUMO

The crystalline lithium oxonitridophosphate Li8+x P3 O10-x N1+x , was obtained in an ampoule synthesis from P3 N5 and Li2 O. The compound crystallizes in the triclinic space group P 1 - ${\mathrel{\mathop{{\rm { 1}}}\limits^{{\rm -}}}}$ with a=5.125(2), b=9.888(5), c=10.217(5) Å, α=70.30(2), ß=76.65(2), γ=77.89(2)°. Li8+x P3 O10-x N1+x is a double salt, the structure of which contains distinctive complex anion species, namely non-condensed P(O,N)4 tetrahedra, and P(O,N)7 double tetrahedra connected by one N atom. Additionally, there is mixed occupation of O/N positions, which enables further anionic species by variation of O/N occupancies. To characterize these motifs in detail, complementary analytical methods were applied. The double tetrahedron exhibits significant disorder in single-crystal X-ray diffraction. Furthermore, the title compound is a Li+ ion conductor with a total ionic conductivity of 1.2×10-7  S cm-1 at 25 °C, and a corresponding total activation energy of 0.47(2) eV.

13.
Proc Natl Acad Sci U S A ; 120(31): e2303928120, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37494398

RESUMO

Although sensor technologies have allowed us to outperform the human senses of sight, hearing, and touch, the development of artificial noses is significantly behind their biological counterparts. This largely stems from the sophistication of natural olfaction, which relies on both fluid dynamics within the nasal anatomy and the response patterns of hundreds to thousands of unique molecular-scale receptors. We designed a sensing approach to identify volatiles inspired by the fluid dynamics of the nose, allowing us to extract information from a single sensor (here, the reflectance spectra from a mesoporous one-dimensional photonic crystal) rather than relying on a large sensor array. By accentuating differences in the nonequilibrium mass-transport dynamics of vapors and training a machine learning algorithm on the sensor output, we clearly identified polar and nonpolar volatile compounds, determined the mixing ratios of binary mixtures, and accurately predicted the boiling point, flash point, vapor pressure, and viscosity of a number of volatile liquids, including several that had not been used for training the model. We further implemented a bioinspired active sniffing approach, in which the analyte delivery was performed in well-controlled 'inhale-exhale' sequences, enabling an additional modality of differentiation and reducing the duration of data collection and analysis to seconds. Our results outline a strategy to build accurate and rapid artificial noses for volatile compounds that can provide useful information such as the composition and physical properties of chemicals, and can be applied in a variety of fields, including disease diagnosis, hazardous waste management, and healthy building monitoring.


Assuntos
Nariz , Olfato , Humanos , Nariz Eletrônico , Aprendizado de Máquina , Gases
14.
Inorg Chem ; 62(27): 10655-10664, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37382207

RESUMO

The structure of the first lithium-containing bismuth ortho (o)-thiophosphate was determined using a combination of powder X-ray, neutron, and electron diffraction. Li60-3xBi16+x(PS4)36 with x in the range of 4.1-6.5 possesses a complex monoclinic structure [space group C2/c (No. 15)] and a large unit cell with the lattice parameters a = 15.4866 Å, b = 10.3232 Å, c = 33.8046 Å, and ß = 85.395° for Li44.4Bi21.2(PS4)36, in agreement with the structure as observed by X-ray and neutron pair distribution function analysis. The disordered distribution of lithium ions within the interstices of the dense host structure and the Li ion dynamics and diffusion pathways have been investigated by solid-state nuclear magnetic resonance (NMR) spectroscopy, pulsed field gradient NMR diffusion measurements, and bond valence sum calculations. The total lithium ion conductivities range from 2.6 × 10-7 to 2.8 × 10-6 S cm-1 at 20 °C with activation energies between 0.29 and 0.32 eV, depending on the bismuth content. Despite the highly disordered nature of lithium ions in Li60-3xBi16+x(PS4)36, the underlying dense host framework appears to limit the dimensionality of the lithium diffusion pathways and emphasizes once more the necessity of a close inspection of the structure-property relationships in solid electrolytes.

15.
J Am Chem Soc ; 145(18): 10051-10060, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37125876

RESUMO

The outstanding diversity of Zr-based frameworks is inherently linked to the variable coordination geometry of Zr-oxo clusters and the conformational flexibility of the linker, both of which allow for different framework topologies based on the same linker-cluster combination. In addition, intrinsic structural disorder provides a largely unexplored handle to further expand the accessibility of novel metal-organic framework (MOF) structures that can be formed. In this work, we report the concomitant synthesis of three topologically different MOFs based on the same M6O4(OH)4 clusters (M = Zr or Hf) and methane-tetrakis(p-biphenyl-carboxylate) (MTBC) linkers. Two novel structural models are presented based on single-crystal diffraction analysis, namely, cubic c-(4,12)MTBC-M6 and trigonal tr-(4,12)MTBC-M6, which comprise 12-coordinated clusters and 4-coordinated tetrahedral linkers. Notably, the cubic phase features a new architecture based on orientational cluster disorder, which is essential for its formation and has been analyzed by a combination of average structure refinements and diffuse scattering analysis from both powder and single-crystal X-ray diffraction data. The trigonal phase also features structure disorder, although involving both linkers and secondary building units. In both phases, remarkable geometrical distortion of the MTBC linkers illustrates how linker flexibility is also essential for their formation and expands the range of achievable topologies in Zr-based MOFs and its analogues.

16.
Sci Rep ; 13(1): 8055, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37198254

RESUMO

Due to the novel properties of both 2D materials and rare-earth elements, developing 2D rare-earth nanomaterials has a growing interest in research. To produce the most efficient rare-earth nanosheets, it is essential to find out the correlation between chemical composition, atomic structure and luminescent properties of individual sheets. In this study, 2D nanosheets exfoliated from Pr3+-doped KCa2Nb3O10 particles with different Pr concentrations were investigated. Energy dispersive X-ray spectroscopy analysis indicates that the nanosheets contain Ca, Nb and O and a varying Pr content between 0.9 and 1.8 at%. K was completely removed after exfoliation. The crystal structure is monoclinic as in the bulk. The thinnest nanosheets are 3 nm corresponding to one triple perovskite-type layer with Nb on the B sites and Ca on the A sites, surrounded by charge compensating TBA+ molecules. Thicker nanosheets of 12 nm thickness (and above) were observed too by transmission electron microscopy with the same chemical composition. This indicates that several perovskite-type triple layers remain stacked similar to the bulk. Luminescent properties of individual 2D nanosheets were studied using a cathodoluminescence spectrometer revealing additional transitions in the visible region in comparison to the spectra of different bulk phases.

17.
J Am Chem Soc ; 145(24): 13241-13248, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37231627

RESUMO

Herein, we report a facile postsynthetic linkage conversion method giving synthetic access to nitrone-linked covalent organic frameworks (COFs) from imine- and amine-linked COFs. The new two-dimensional (2D) nitrone-linked covalent organic frameworks, NO-PI-3-COF and NO-TTI-COF, are obtained with high crystallinity and large surface areas. Nitrone-modified pore channels induce condensation of water vapor at 20% lower humidity compared to their amine- or imine-linked precursor COFs. Thus, the topochemical transformation to nitrone linkages constitutes an attractive approach to postsynthetically fine-tune water adsorption properties in framework materials.

18.
Adv Mater ; 35(25): e2301126, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37003701

RESUMO

While micromachines with tailored functionalities enable therapeutic applications in biological environments, their controlled motion and targeted drug delivery in biological media require sophisticated designs for practical applications. Covalent organic frameworks (COFs), a new generation of crystalline and nanoporous polymers, offer new perspectives for light-driven microswimmers in heterogeneous biological environments including intraocular fluids, thus setting the stage for biomedical applications such as retinal drug delivery. Two different types of COFs, uniformly spherical TABP-PDA-COF sub-micrometer particles and texturally nanoporous, micrometer-sized TpAzo-COF particles are described and compared as light-driven microrobots. They can be used as highly efficient visible-light-driven drug carriers in aqueous ionic and cellular media. Their absorption ranging down to red light enables phototaxis even in deeper and viscous biological media, while the organic nature of COFs ensures their biocompatibility. Their inherently porous structures with ≈2.6  and ≈3.4 nm pores, and large surface areas allow for targeted and efficient drug loading even for insoluble drugs, which can be released on demand. Additionally, indocyanine green (ICG) dye loading in the pores enables photoacoustic imaging, optical coherence tomography, and hyperthermia in operando conditions. This real-time visualization of the drug-loaded COF microswimmers enables unique insights into the action of photoactive porous drug carriers for therapeutic applications.


Assuntos
Estruturas Metalorgânicas , Polímeros , Humor Aquoso , Portadores de Fármacos , Sistemas de Liberação de Medicamentos
19.
J Am Chem Soc ; 145(14): 7800-7809, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36976754

RESUMO

Covalent organic frameworks (COFs) have emerged as versatile platforms for the separation and storage of hazardous gases. Simultaneously, the synthetic toolbox to tackle the "COF trilemma" has been diversified to include topochemical linkage transformations and post-synthetic stabilization strategies. Herein, we converge these themes and reveal the unique potential of nitric oxide (NO) as a new reagent for the scalable gas-phase transformation of COFs. Using physisorption and solid-state nuclear magnetic resonance spectroscopy on 15N-enriched COFs, we study the gas uptake capacity and selectivity of NO adsorption and unravel the interactions of NO with COFs. Our study reveals the clean deamination of terminal amine groups on the particle surfaces by NO, exemplifying a unique surface passivation strategy for COFs. We further describe the formation of a NONOate linkage by the reaction of NO with an amine-linked COF, which shows controlled release of NO under physiological conditions. NONOate-COFs thus show promise as tunable NO delivery platforms for bioregulatory NO release in biomedical applications.

20.
Chemistry ; 29(27): e202300174, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-36807370

RESUMO

The Li+ ion conductor Li27-x [P4 O7+x N9-x ]O3 (x≈1.9) has been synthesized from P3 N5 , Li3 N and Li2 O in a Ta ampoule at 800 °C under Ar atmosphere. The cubic compound crystallizes in space group I 4 ‾ 3 d ${I\overline 4 3d}$ with a=12.0106(14) Å and Z=4. It contains both non-condensed [PO2 N2 ]5- and [PO3 N]4- tetrahedra as well as O2- ions, surrounded by Li+ ions. Charge neutrality is achieved by partial occupancy of Li positions, which was refined with neutron powder diffraction data. Measurements of the partial ionic and electronic conductivity show a total ionic conductivity of 6.6×10-8  S cm-1 with an activation energy of 0.46±0.02 eV and a bulk ionic conductivity of 4×10-6  S cm-1 at 25 °C, which is close to the ionic conductivity of amorphous lithium nitridophosphate. This makes Li27-x [P4 O7+x N9-x ]O3 an interesting candidate for investigation of structural factors affecting ionic conductivity in lithium oxonitridophosphates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA