Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(13)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37446268

RESUMO

Freezing stress is one of the main factors limiting the growth and yield of wheat. In this study, we found that TaMYB4 expression was significantly upregulated in the tillering nodes of the strong cold-resistant winter wheat variety Dongnongdongmai1 (Dn1) under freezing stress. Weighted gene co-expression network analysis, qRT-PCR and protein-DNA interaction experiments demonstrated that monodehydroascorbate reductase (TaMDHAR) is a direct target of TaMYB4. The results showed that overexpression of TaMYB4 enhanced the freezing tolerance of transgenic Arabidopsis. In TaMYB4 overexpression lines (OE-TaMYB4), AtMDHAR2 expression was upregulated and ascorbate-glutathione (AsA-GSH) cycle operation was enhanced. In addition, the expression of cold stress marker genes such as AtCBF1, AtCBF2, AtCBF3, AtCOR15A, AtCOR47, AtKIN1 and AtRD29A in OE-TaMYB4 lines was significantly upregulated. Therefore, TaMYB4 may increase freezing tolerance as a transcription factor (TF) in Arabidopsis through the AsA-GSH cycle and DREB/CBF signaling pathway. This study provides a potential gene for molecular breeding against freezing stress.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Congelamento , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Resposta ao Choque Frio/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
2.
BMC Plant Biol ; 22(1): 277, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35659183

RESUMO

BACKGROUND: Heilongjiang Province has a long and cold winter season (the minimum temperature can reach -30 ℃), and few winter wheat varieties can safely overwinter. Dongnongdongmai1 (Dn1) is the first winter wheat variety that can safely overwinter in Heilongjiang Province. This variety fills the gap for winter wheat cultivation in the frigid region of China and greatly increases the land utilization rate. To understand the molecular mechanism of the cold response, we conducted RNA-sequencing analysis of Dn1 under cold stress. RESULTS: Approximately 120,000 genes were detected in Dn1 under cold stress. The numbers of differentially expressed genes (DEGs) in the six comparison groups (0 ℃ vs. 5 ℃, -5 ℃ vs. 5 ℃, -10 ℃ vs. 5 ℃, -15 ℃ vs. 5 ℃, -20 ℃ vs. 5 ℃ and -25 ℃ vs. 5 ℃) were 11,313, 8313, 15,636, 13,671, 14,294 and 13,979, respectively. Gene Ontology functional annotation suggested that the DEGs under cold stress mainly had "binding", "protein kinase" and "catalytic" activities and were involved in "oxidation-reduction", "protein phosphorylation" and "carbohydrate metabolic" processes. Kyoto Encyclopedia of Genes and Genomes enrichment analysis indicated that the DEGs performed important functions in cold signal transduction and carbohydrate metabolism. In addition, major transcription factors (AP2/ERF, bZIP, NAC, WRKY, bHLH and MYB) participating in the Dn1 cold stress response were activated by low temperature. CONCLUSION: This is the first study to explore the Dn1 transcriptome under cold stress. Our study comprehensively analysed the key genes involved in cold signal transduction and carbohydrate metabolism in Dn1 under cold stress. The results obtained by transcriptome analysis could help to further explore the cold resistance mechanism of Dn1 and provide basis for breeding of cold-resistant crops.


Assuntos
Resposta ao Choque Frio , Triticum , Temperatura Baixa , Resposta ao Choque Frio/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Estações do Ano , Transcriptoma , Triticum/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA