RESUMO
Monosubstituted tetrazines are important bioorthogonal reactive tools due to their rapid ligation with trans-cyclooctene. However, their application is limited by the reactivity-stability paradox in biological environments. In this study, we demonstrated that steric effects are crucial in resolving this paradox through theoretical methods and developed a simple synthetic route to validate our computational findings, leading to the discovery of 1,3-azole-4-yl and 1,2-azole-3-yl monosubstituted tetrazines as superior bioorthogonal tools. These new tetrazines surpass previous tetrazines in terms of high reactivities and elevated stabilities. The most stable tetrazine exhibits a reasonable stability (71% remaining after 24 h incubation in cell culture medium) and an exceptionally high reactivity (k2 > 104 M-1 s-1 toward trans-cyclooctene). Due to its good stability in biological systems, a noncanonical amino acid containing such a tetrazine side chain was genetically encoded into proteins site-specifically via an expanded genetic code. The encoded protein can be efficiently labeled using cyclopropane-fused trans-cyclooctene dyes in living mammalian cells with an ultrafast reaction rate exceeding 107 M-1 s-1, making it one of the fastest protein labeling reactions reported to date. Additionally, we showed its superiority through in vivo reactions in living mice, achieving an efficient local anchoring of proteins. These tetrazines are expected to be optimal bioorthogonal reactive tools within living systems.
Assuntos
Ciclo-Octanos , Estrutura Molecular , Humanos , Ciclo-Octanos/química , Ciclo-Octanos/síntese química , Animais , Azóis/química , Azóis/síntese químicaRESUMO
Many diseases are associated with genetic mutation and expression of mutated proteins, such as cancers. Therapeutic approaches that selectively target the synthesis process of multiple proteins show greater potential compared to single-protein approaches in oncological diseases. However, conventional agents to regulate the synthesis of multiple protein still suffer from poor spatiotemporal selectivity and stability. Here, a new method using a dye-peptide conjugate, PRFK, for multi-protein interference with spatiotemporal selectivity and reliable stability, is reported. By using the peptide sequence that targets tumor cells, PRFK can be efficiently taken up, followed by specific binding to the KDELR (KDEL receptor) protein located in the endoplasmic reticulum (ER). The dye generates 1O2 under light irradiation, enabling photodynamic therapy. This process converts the furan group into a cytidine-reactive intermediate, which covalently binds to mRNA, thereby blocking protein synthesis. Upon treating 4T1 cells, the proteomics data show alterations in apoptosis, ferroptosis, proliferation, migration, invasion, and immune infiltration, suggesting that multi-protein interference leads to the disruption of cellular physiological activities, ultimately achieving tumor treatment. This study presents a multi-protein interference probe with the potential for protein interference within various subcellular organelles in the future.
Assuntos
Fotoquimioterapia , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Fotoquimioterapia/métodos , Peptídeos/química , RNA/química , RNA/metabolismo , Apoptose/efeitos dos fármacos , Feminino , Neoplasias/metabolismo , Neoplasias/patologia , Camundongos Endogâmicos BALB CRESUMO
PURPOSE: Fluorescence imaging-guided surgery has been used in oncology. However, for tiny tumors, the current imaging probes are still difficult to achieve high-contrast imaging, leading to incomplete resection. In this study, we achieved precise surgical resection of tiny metastatic cancers by constructing an engineering erythrocyte membrane-camouflaged bioprobe (AR-M@HMSN@P). METHODS: AR-M@HMSN@P combined the properties of aggregation-induced emission luminogens (AIEgens) named PF3-PPh3 (P), with functional erythrocyte membrane modified by a modular peptide (AR). Interestingly, AR was composed of an asymmetric tripodal pentapeptide scaffold (GGKGG) with three appended modulars: KPSSPPEE (A6) peptide, RRRR (R4) peptide and cholesterol. To verify the specificity of the probe in vitro, SKOV3 cells with overexpression of CD44 were used as the positive group, and HLF cells with low expression of CD44 were devoted as the control group. The AR-M@HMSN@P fluorescence imaging was utilized to provide surgical guidance for the removal of micro-metastatic lesions. RESULTS: In vivo, the clearance of AR-M@HMSN@P by the immune system was reduced due to the natural properties inherited from erythrocytes. Meanwhile, the A6 peptide on AR-M@HMSN@P was able to specifically target CD44 on ovarian cancer cells, and the electrostatic attraction between the R4 peptide and the cell membrane enhanced the firmness of this targeting. Benefiting from these multiple effects, AR-M@HMSN@P achieved ultra-precise tumor imaging with a signal-to-noise ratio (SNR) of 15.2, making it possible to surgical resection of tumors < 1 mm by imaging guidance. CONCLUSION: We have successfully designed an engineered fluorescent imaging bioprobe (AR-M@HMSN@P), which can target CD44-overexpressing ovarian cancers for precise imaging and guide the resection of minor tumors. Notably, this work holds significant promise for developing biomimetic probes for clinical imaging-guided precision cancer surgery by exploiting their externally specified functional modifications.
Assuntos
Membrana Eritrocítica , Corantes Fluorescentes , Neoplasias Ovarianas , Neoplasias Ovarianas/diagnóstico por imagem , Neoplasias Ovarianas/cirurgia , Feminino , Humanos , Corantes Fluorescentes/química , Membrana Eritrocítica/química , Linhagem Celular Tumoral , Animais , Medicina de Precisão/métodos , Imagem Óptica/métodos , Cirurgia Assistida por Computador/métodos , Camundongos , Receptores de Hialuronatos/metabolismoRESUMO
Nonobstructive azoospermia (NOA) is an important cause of infertility, and intracytoplasmic sperm injection (ICSI) is the mainstay of treatment for these patients. In cases where a sufficient number of sperm (usually 1-2) is not available, the selection of oocytes for ICSI is a difficult problem that must be solved. Here, we constructed a dual-activated oxidative stress-responsive AIE probe, b-PyTPA. The strong donor-acceptor configuration of b-PyTPA leads to twisted intramolecular charge transfer (TICT) effect that quenches the fluorescence of the probe, however, H2O2 would specifically remove the boronatebenzyl unit and release a much weaker acceptor, which inhibits TICT and restores the fluorescence. In addition, the presence of a pyridine salt makes b-PyTPA more hydrophilic, whereas removal of the pyridine salt increases the hydrophobicity of PyTPA, which triggers aggregation and further enhances fluorescence. Thus, the higher the intracellular level of oxidative stress, the stronger the fluorescence. In vitro, this dual-activated fluorescent probe is capable of accurately detecting senescent cells (high oxidative stress). More importantly, b-PyTPA was able to characterize senescent oocytes, as assessed by the level of oxidative stress. It is also possible to identify high quality oocytes from those obtained for subsequent ICSI. In conclusion, this dual-activated oxidative stress-assessment probe enables the quality assessment of oocytes and has potential application in ICSI.
Assuntos
Infertilidade Masculina , Humanos , Masculino , Infertilidade Masculina/etiologia , Infertilidade Masculina/terapia , Peróxido de Hidrogênio , Sêmen , Espermatozoides , Oócitos , Piridinas/farmacologiaRESUMO
Realizing protein analysis in organelles of living cells is of great significance for developing diagnostic and therapeutic methods of diseases. Fluorescent-labeled antibodies with well imaging performance and high affinity are classical biochemical tools for protein analysis, while due to the inability to effectively enter into cells, not to mention organelles and the uncontrollable reaction sites that might cause antibodies inactivation when chemically modification, they are hard to apply to living cells. Inspired by the structure of fluorescent-labeled antibodies, we designed as a universal detection platform that was based on the peptide-conjugated probes (PCPs) and consisted of three parts: a)â a rotor type fluorescent molecular scaffold for conjugation and signal output; b)â the cell penetration protein recognition unit; c)â the subcellular organelle targeting unit. In living cells, PCPs could firstly localize at organelles and then proceed protein specific recognition, thus jointly leading to the restriction of twisted intramolecular charge transfer and activation of fluorescence signal. As a proof-of-concept, six different proteins in three typical intracellular organelles could be detected by our platform through simply replacing the recognition sequence of proteins and matching organelle targeting units. The position and intensity of fluorescence signals demonstrated specificity of PCPs and universality of the platform.
Assuntos
Corantes Fluorescentes , Organelas , Corantes Fluorescentes/química , Organelas/química , Peptídeos/metabolismo , FluorescênciaRESUMO
PURPOSE: Vascular endothelial growth factor receptor 3 (VEGFR-3) plays a critical role in tumor lymphangiogenesis and metastasis, holding promise as a promising therapeutic target for solid tumors. TMVP1 (LARGR) is a 5-amino acid peptide previously identified in our laboratory from bacterial peptide display system that specifically targets VEGFR-3. Radiolabeled TMVP1 can be used for non-invasive imaging of VEGFR-3 expressing tumors. Homodimeric peptides have better targeting ability than monomeric peptides, and it is worth exploring whether homodimers of TMVP1 ((TMVP1)2) can achieve better imaging effects. This study aimed to explore the peptide properties and tumor assessment value of [68Ga]Ga-labeled (TMVP1)2. METHODS: In this study, we developed a TMVP1 homodimer that was conjugated with 1,4,7-triazacyclononane-N, N', Nâ³-triacetic acid (NOTA) via tetraethyleneglycol (PEG4) and triglyicine (Gly3) spacer, and labeled with 68Ga, to construct [68Ga]Ga-NOTA-(TMVP1)2. Binding of VEGFR-3 by TMVP1 and (TMVP1)2, respectively, was modeled by molecular docking. The affinity of [68Ga]Ga-NOTA-(TMVP1)2 for VEGFR-3 and its ability to bind to cells were evaluated. MicroPET imaging and biodistribution studies of [68Ga]Ga-NOTA-(TMVP1)2 were performed in subcutaneous C33A cervical cancer xenografts. Five healthy volunteers and eight patients with cervical cancer underwent whole-body PET/CT acquisition 30-45 min after intravenous injection of [68Ga]Ga-NOTA-(TMVP1)2. RESULTS: Both molecular docking and cellular experiments showed that homodimeric TMVP1 had a higher affinity for VEGFR-3 than monomeric TMVP1. [68Ga]Ga-NOTA-(TMVP1)2 was excreted mainly through the renal route and partly through the liver route. In mice bearing C33A xenografts, [68Ga]Ga-NOTA-(TMVP1)2 specifically localized in the tumor (2.32 ± 0.10% ID/g). Pretreatment of C33A xenograft mice with the unlabeled peptide NOTA-(TMVP1)2 reduced the enrichment of [68Ga]Ga-NOTA-(TMVP1)2 in tumors (0.58 ± 0.01% ID/g). [68Ga]Ga-NOTA-(TMVP1)2 proved to be safe in all healthy volunteers and recruited patients, with no side effects or allergies noted. In cervical cancer patients, a majority of the [18F]-FDG identified lesions (18/22, 81.8%) showed moderate to high signal intensity on [68Ga]Ga-NOTA-(TMVP1)2. SUVmax and SUVmean were 2.32 ± 0.77 and 1.61 ± 0.48, respectively. With normal muscle (gluteus maximus) as background, tumor-to-background ratios were 3.49 ± 1.32 and 3.95 ± 1.64 based on SUVmax and SUVmean, respectively. CONCLUSION: The favorable characterizations of [68Ga]Ga-NOTA-(TMVP1)2 such as convenient synthesis, high specific activity, and high tumor uptake enable the evaluation of VEGFR-3 in cervical cancer patients and warrant further clinical studies. TRIAL REGISTRATION: ChiCTR-DOD-17012458. Registered August 23, 2017 (retrospectively registered).
Assuntos
Radioisótopos de Gálio , Compostos Heterocíclicos com 1 Anel , Neoplasias do Colo do Útero , Receptor 3 de Fatores de Crescimento do Endotélio Vascular , Neoplasias do Colo do Útero/diagnóstico por imagem , Neoplasias do Colo do Útero/metabolismo , Humanos , Feminino , Animais , Camundongos , Compostos Heterocíclicos com 1 Anel/química , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/química , Radioisótopos de Gálio/química , Linhagem Celular Tumoral , Compostos Heterocíclicos/química , Distribuição Tecidual , Peptídeos/química , Peptídeos/farmacocinética , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Compostos Radiofarmacêuticos/farmacocinética , Compostos Radiofarmacêuticos/química , Pessoa de Meia-Idade , Multimerização Proteica , Traçadores RadioativosRESUMO
Fluorescence imaging-guided navigation for cancer surgery has a promising clinical application. However, pan-cancer encompasses a wide variety of cancer types with significant heterogeneity, resulting in the lack of universal and highly contrasted fluorescent probes for surgical navigation. Here, we developed an aggregation-induced emission (AIE) probe (MI-AIE-TsG, MAT) with dual activation for pan-cancer surgical navigation. MAT weakly activates fluorescence by targeting the SUR1 protein on the endoplasmic reticulum (ER) through the TsG group. Subsequently, the sulfhydryl groups on the unfolded proteins, which are highly enriched in cancer ER, react with the maleimide (MI) of MAT through the thiol-ene click reaction, further enhancing the fluorescence. The formation of a SUR1-MAT-unfolded protein sandwich complex reinforces the restriction of intramolecular motion and eliminates photoinduced electron transfer of MAT, leading to high signal-to-noise (9.2) fluorescence imaging and use for surgical navigation of pan-cancer. The generally high content of unfolded proteins in cancer cells makes MAT imaging generalizable, and it currently has proven feasibility in ovarian, cervical, and breast cancers. Meanwhile, MAT promotes cellular autophagy by hindering protein folding, thereby inhibiting cancer cell proliferation. This generalizable, high-contrast AIE fluorescent probe spans the heterogeneity of pancreatic cancer, enabling precise pancreatic cancer surgery navigation and treatment.
Assuntos
Neoplasias Pancreáticas , Cirurgia Assistida por Computador , Humanos , Corantes Fluorescentes , Compostos de Sulfidrila , Imagem ÓpticaRESUMO
Designing reactive calcium-based nanogenerators to produce excess calcium ions (Ca2+ ) in tumor cells is an attractive tumor treatment method. However, nanogenerators that introduce exogenous Ca2+ are either overactive incapable of on-demand release, or excessively inert incapable of an overload of calcium rapidly. Herein, inspired by inherently diverse Ca2+ -regulating channels, a photo-controlled Ca2+ nanomodulator that fully utilizes endogenous Ca2+ from dual sources was designed to achieve Ca2+ overload in tumor cells. Specifically, mesoporous silica nanoparticles were used to co-load bifunctional indocyanine green as a photodynamic/photothermal agent and a thermal-sensitive nitric oxide (NO) donor (BNN-6). Thereafter, they were coated with hyaluronic acid, which served as a tumor cell-targeting unit and a gatekeeper. Under near-infrared light irradiation, the Ca2+ nanomodulator can generate reactive oxygen species that stimulate the transient receptor potential ankyrin subtype 1 channel to realize Ca2+ influx from extracellular environments. Simultaneously, the converted heat can induce BNN-6 decomposition to generate NO, which would open the ryanodine receptor channel in the endoplasmic reticulum and allow stored Ca2+ to leak. Both in vitro and in vivo experiments demonstrated that the combination of photo-controlled Ca2+ influx and release could enable Ca2+ overload in the cytoplasm and efficiently inhibit tumor growth.
Assuntos
Nanopartículas , Neoplasias , Humanos , Cálcio , Fototerapia , Neoplasias/tratamento farmacológico , Verde de Indocianina , Retículo EndoplasmáticoRESUMO
Fluorescence resonance energy transfer (FRET) finds widespread utility in biochemical sensing, single-molecule experiments, cell physiology, and various other domains due to its inherent simplicity and high sensitivity. Nevertheless, the efficiency of energy transfer between the FRET donor and acceptor is significantly contingent on the local photonic environment, a factor that limits its application in complex systems or multianalyte detections. Here, a fluorescent selectivity-enhanced acridine orange (AO)-aflatoxins (AFs) FRET system based on a range of 3D topological photonic crystals (PCs) was developed with the aim of enhancing the selectivity and discrimination capabilities of FRET. By exploring the angle-dependent characteristics of the photonic stopband, the stopband distribution across different 3D topological PCs pixels was investigated. This approach led to selective fluorescence enhancement in PCs that matched the stopbands, enabling the successful discrimination of six distinct aflatoxins and facilitating complex multianalysis of moldy food samples. In particular, the stopband, which was strategically positioned within the blue-purple structural color range, exhibited a strong alignment with the fluorescence peaks of both the FRET donor and acceptor. This alignment allowed the 3D three-pointed star PCs to be effectively employed for the identification of mixed samples containing six distinct aflatoxins as well as the detection of real aflatoxin samples present in moldy potatoes, bread, oats, and peanuts. Impressively, this approach achieved a remarkable accuracy rate of 100%. This innovative strategy not only presents a novel avenue for developing a multitarget discrimination analysis system but also offers a convenient pretreatment method for the quantitative detection of various aflatoxins.
Assuntos
Aflatoxinas , Transferência Ressonante de Energia de Fluorescência , Transferência Ressonante de Energia de Fluorescência/métodos , Corantes , Espectrometria de Fluorescência/métodos , Corantes Fluorescentes/químicaRESUMO
Nanofibers are one of the most important morphologies of molecular self-assemblies, the formation of which relies on the diverse intermolecular interactions of fibrous-forming units. In the past decade, rapid advances have been made in the biomedical application of nanofibers, such as bioimaging and tumor treatment. An important topic to be focused on is not only the nanofiber formation mechanism but also where it forms, because different destinations could have different influences on cells and its formation could be triggered by unique stimuli in organelles. It is therefore necessary and timely to summarize the nanofibers assembled in organelles. This minireview discusses the formation mechanism, triggering strategies, and biomedical applications of nanofibers, which may facilitate the rational design of nanofibers, improve our understanding of the relationship between nanofiber properties and organelle characteristics, allow a comprehensive recognition of organelles affected by materials, and enhance the therapeutic efficiency of nanofibers.
Assuntos
Nanofibras , Neoplasias , Humanos , Nanofibras/química , OrganelasRESUMO
Surgery is a traditional tumor treatment, and immunotherapy can reduce the postoperative recurrence of tumors. However, the intrinsic limits of low responsive rate and non-tumor specificity of immunotherapy agents are still insufficient to address therapeutic demands. Herein, the macrophages membrane camouflaged nanoparticles (NPs), named M@PFC, consisting of the aggregation-induced emission photosensitizer (PF3-PPh3 ) and immune adjuvant (CpG), are reported. As the protein on the membrane interacts with the vascular cell adhesion molecule 1 (VCAM-1) of cancer cells, M@PFC efficiently transports CpG to the tumor. Meanwhile, M@PFC can evade clearance by the immune system and prolong the circulation time in vivo; thus, enhancing their accumulation in tumors. PF3-PPh3 promotes high production of reactive oxygen species (ROS) and triggers immune cell death (ICD) in tumor cells under light exposure. Importantly, CpG enrichment in tumors can stimulate tumor cells to produce immune factors to assist in enhancing ICD effects. The synergistic effect combining the PDT properties of the aggregation-induced emission (AIE)-active photosensitizer and immunotherapy properties of CpG significantly delays tumor recurrence after surgery. In conclusion, this strategy achieves the synergistic activation of the immune system for anti-tumor activity, providing a novel paradigm for the development of therapeutic nanodrugs to delay postoperative tumor recurrence.
Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Recidiva Local de Neoplasia , Neoplasias/tratamento farmacológico , Nanopartículas/uso terapêutico , Imunoterapia , Espécies Reativas de Oxigênio/metabolismo , Macrófagos/metabolismo , Linhagem Celular TumoralRESUMO
Photothermal therapy (PTT) using near-infrared (NIR) conjugated polymers as photosensitizers has exhibited enormous potential for tumor treatment. However, most NIR conjugated polymers have poor therapeutic efficacy due to their faint absorbance in the NIR region and low photothermal conversion efficiency (PCE). Herein, a valuable strategy for designing NIR polymeric photosensitizer PEKBs with an enhanced PCE accompanied by strong NIR absorbance is proposed by means of inserting TPA-AQ as a thermally activated delayed fluorescence unit into a polymeric backbone. In these PEKBs, PEKB-244 with the appropriate molar content of the TPA-AQ unit displays the strongest NIR absorbance and the highest PCE of 64.5%. Theoretical calculation results demonstrate that the TPA-AQ unit in the polymeric backbone can modulate the intramolecular charge transfer effects and the excited energy decay routes for generating higher heat. The prepared nanoparticles (PEKB-244 NPs) exhibit remarkable photothermal conversion capacities and great biocompatibility in aqueous solutions. Moreover, PEKB-244 NPs also show outstanding photothermal stability, displaying negligible changes in the absorbance within 808 nm irradiation of 1 h (800 mW cm-2). Both in vitro and in vivo experimental results further indicate that PEKB-244 NPs can substantially kill cancer cells under NIR laser irradiation. We anticipate that this novel molecular design strategy can be employed to develop excellent NIR photosensitizers for cancer photothermal therapy.
Assuntos
Nanopartículas , Terapia Fototérmica , Fármacos Fotossensibilizantes , Polímeros/farmacologia , Fluorescência , FototerapiaRESUMO
Nanochannel technology has emerged as a powerful tool for label-free and highly sensitive detection of protein folding/unfolding status. However, utilizing the inner walls of a nanochannel array may cause multiple events even for proteins with the same conformation, posing challenges for accurate identification. Herein, we present a platform to detect unfolded proteins through electrical and optical signals using nanochannel arrays with outer-surface probes. The detection principle relies on the specific binding between the maleimide groups in outer-surface probes and the protein cysteine thiols that induce changes in the ionic current and fluorescence intensity responses of the nanochannel array. By taking advantage of this mechanism, the platform has the ability to differentiate folded and unfolded state of proteins based on the exposure of a single cysteine thiol group. The integration of these two signals enhances the reliability and sensitivity of the identification of unfolded protein states and enables the distinction between normal cells and Huntington's disease mutant cells. This study provides an effective approach for the precise analysis of proteins with distinct conformations and holds promise for facilitating the diagnoses of protein conformation-related diseases.
RESUMO
Fluorescence imaging can improve surgical accuracy in ovarian cancer, but a high signal-to-noise ratio is crucial for tiny metastatic cancers. Meanwhile, intraoperative fluorescent surgical navigation modalities alone are still insufficient to completely remove ovarian cancer lesions, and the recurrence rate remains high. Here, we constructed a cancer-associated fibroblasts (CAFs)-mimetic aggregation-induced emission (AIE) probe to enable full-cycle management of surgery that eliminates recurrence. AIE molecules (P3-PPh3) were packed in hollow mesoporous silica nanoparticles (HMSNs) to form HMSN-probe and then coated with a CAFs membrane to prepare CAF-probe. First, due to the negative potential of the CAF-probe, the circulation time in vivo is elevated, which facilitates passive tumor targeting. Second, the CAF-probe avoids its clearance by the immune system and improves the bioavailability. Finally, the fibronectin on the CAF-probe specifically binds to integrin α-5 (ITGA5), which is highly expressed in ovarian cancer cells, enabling fluorescence imaging with a contrast of up to 8.6. CAF-probe-based fluorescence imaging is used to evaluate the size and location of ovarian cancer before surgery (preoperative evaluation), to guide tumor removal during surgery (intraoperative navigation), and to monitor tumor recurrence after surgery (postoperative monitoring), ultimately significantly improving the efficiency of surgery and completely eliminating tumor recurrence. In conclusion, we constructed a CAFs mimetic AIE probe and established a full-cycle surgical management model based on its precise imaging properties, which significantly reduced the recurrence of ovarian cancer.
RESUMO
The ability to track the levels of specific molecules, such as drugs, metabolites, and biomarkers, in the living body, in real time and for long durations, would improve our understanding of health and our ability to diagnose, treat, and monitor disease. To this end, we are developing electrochemical aptamer-based (EAB) biosensors, a general platform supporting high-frequency, real-time molecular measurements in the living body. Here we report that the use of an agarose hydrogel protective layer for EAB sensors significantly improves their signaling stability when deployed in the complex, highly time-varying environments found in vivo. The improved stability is sufficient that these hydrogel-protected sensors achieved good baseline stability and precision when deployed in situ in the veins, muscles, bladder, or tumors of living rats without the use of the drift correction approaches traditionally required in such placements. Finally, our implantable gel-protective EAB sensors achieved good biocompatibility when deployed in vivo in the living rats without causing any severe inflammation.
Assuntos
Aptâmeros de Nucleotídeos , Animais , Ratos , Hidrogéis , Próteses e Implantes , Músculos , Transdução de SinaisRESUMO
Bio-markers, such as ions, small molecules, nucleic acids, peptides, proteins and cells, participate in the construction of living organisms and play important roles in biological processes. It is of great significance to accurately detect these bio-markers for studying their basic functions, the development of molecular diagnosis and to better understand life processes. Solid-state nanochannel-based sensing systems have been demonstrated for the detection of bio-markers, due to their rapid, label-free and high-throughput screening, with high sensitivity and specificity. Generally, studies on solid-state nanochannels have focused on probes on the inner-wall (PIW), ignoring probes on the outer-surface (POS). As a result, the direct detection of cells is difficult to realize by these inner-wall focused nanochannels. Moreover, the sensitivity for detecting ions, small molecules, nucleic acids, peptides and proteins requires further improvement. Recent research has focused on artificial solid-state nanochannels with POS, which have demonstrated the ability to independently regulate ion transport. This design not only contributes to the in situ detection of large analytes, such as cells, but also provides promising opportunities for ultra-high sensitivity detection with a clear mechanism. In this tutorial review, we present an overview of the detection principle used for solid-state nanochannels, inner-wall focused nanochannels and outer-surface focused nanochannels. Furthermore, we discuss the remaining challenges faced by current nanochannel technologies and provide insights into their prospects.
Assuntos
Nanoestruturas , Ácidos Nucleicos , Nanoestruturas/química , Transporte de Íons , Peptídeos , ÍonsRESUMO
Inducing and monitoring cell apoptosis in a real-time manner are crucial for evaluating the therapeutic effect of drugs and avoiding excessive treatment. Although promising advancements have been made to monitor cell apoptosis by assessing cell membrane integrity, the chronic compromise of cellular fitness caused by imbalance proteostasis is not visible and hard to be detected. As an indicator for cell apoptosis, imaging of aggregated proteins provides a new direction. Herein, we design a peptide-conjugated probe (QRKN) that can induce mitochondrial dysfunction for self-reporting cell apoptosis by imaging aggregated proteins. Specifically, QRKN can be cleaved into the α-helix-forming part (QRK) and azide-modified small-molecule part (N) by overexpressed cathepsin B (CB) in tumor cells. The QRK part can destroy the mitochondrial membrane and promote cytochrome c (Cyt c) efflux and caspase 3 expression. The other N part can inhibit the activity of mitochondrial complex IV (Mito-IV) and decrease the expression level of adenosine triphosphate (ATP). Two signaling pathways cooperatively induce mitochondrial dysfunction, resulting in protein aggregation and cell apoptosis ultimately. Meanwhile, the cell apoptosis process can be monitored based on QRKN, which is highly sensitive to the aggregated protein-triggered viscosity change. The self-reporting probe can monitor therapeutic responses and provide valuable diagnosis information.
Assuntos
Apoptose , Peptídeos , Complexo IV da Cadeia de Transporte de Elétrons , Trifosfato de Adenosina , AzidasRESUMO
Light has profoundly impacted modern medicine and healthcare, with numerous luminescent agents and imaging techniques currently being used to assess health and treat diseases. As an emerging concept in luminescence, aggregation-induced emission (AIE) has shown great potential in biological applications due to its advantages in terms of brightness, biocompatibility, photostability, and positive correlation with concentration. This review provides a comprehensive summary of AIE luminogens applied in imaging of biological structure and dynamic physiological processes, disease diagnosis and treatment, and detection and monitoring of specific analytes, followed by representative works. Discussions on critical issues and perspectives on future directions are also included. This review aims to stimulate the interest of researchers from different fields, including chemistry, biology, materials science, medicine, etc., thus promoting the development of AIE in the fields of life and health.
Assuntos
Corantes Fluorescentes , Substâncias Luminescentes , Corantes Fluorescentes/química , Luminescência , Diagnóstico por Imagem , Atenção à SaúdeRESUMO
Functional probes not only at the inner wall but also at the outer surface of nanochannel systems could be used for the recognition and detection of biotargets. Despite the advancements, the current detection mechanisms are still mainly based on the surface charge variation. We proposed a strategy of using the variation of wettability on the outer surface of nanochannels for detecting a tumor marker, herein, exemplifying matrix metalloproteinase-2 (MMP-2). The outer surface of the nanochannels were modified with amphipathic peptide probe consisting of hydrophilic unit (CRRRR), MMP-2 cleavage unit (PLGLAG), and hydrophobic unit (Fn). After recognition of MMP-2, due to the release of hydrophobic unit, the hydrophilicity of the outer surface was expected to increase, thus leading to the increase of ion current. Furthermore, the number (n) of phenylalanine (F) in the hydrophobic unit was modulated from 2, 4, to 6. By lengthening the hydrophobic unit, the limit of detection for MMP-2 detection could reach 1 ng/mL (when n = 6) and improve by 50-fold (to n = 2). This nanochannel system was utilized to successfully detect the MMP-2 secreted from cells and demonstrated that the expression of MMP-2 was related to the cell cycle and exhibited the highest level in G1/S phase. This study proved that in addition to the surface charge, wettability regulation could also be utilized as a variation factor to broaden the design strategy of a probe on OS to achieve the detection of biotargets.
Assuntos
Metaloproteinase 2 da Matriz , Molhabilidade , Transporte de Íons , Interações Hidrofóbicas e HidrofílicasRESUMO
Nuclear proteins have been regarded as attractive targets for exploiting therapeutic agents. However, those agents cannot efficiently pass through nuclear pores and it is also difficult to overcome the crowded nuclear environment to react with proteins. Herein, we propose a novel strategy acting in the cytoplasm to regulate nuclear proteins based on their signaling pathways, instead of directly entering into nuclei. A multifunctional complex PKK-TTP/hs carries human telomerase reverse transcriptase (hTERT) small interfering RNA (defined as hs) for gene silencing in the cytoplasm, which reduced the import of nuclear protein. At the same time, it could generate reactive oxygen species (ROS) under light irradiation, which raised the export of nuclear proteins by promoting proteins translocation. Through this dual-regulatory pathway, we successfully reduced nuclear protein (hTERT proteins) in vivo (42.3%). This work bypasses the challenge of directly entering into the nucleus and provides an effective strategy for regulating nuclear proteins.