Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 9(9): e108748, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25259839

RESUMO

Exosomes, biologically active nanoparticles (40-100 nm) released by hematopoietic and non-hematopoietic cells, contain a variety of proteins and small, non-coding RNA known as microRNA (miRNA). Exposure to various pathogens and disease states modifies the composition and function of exosomes, but there are no studies examining in vivo exosomal changes evoked by the acute stress response. The present study reveals that exposing male Fisher 344 rats to an acute stressor modulates the protein and miRNA profile of circulating plasma exosomes, specifically increasing surface heat shock protein 72 (Hsp72) and decreasing miR-142-5p and -203. The selected miRNAs and Hsp72 are associated with immunomodulatory functions and are likely a critical component of stress-evoked modulation of immunity. Further, we demonstrate that some of these stress-induced modifications in plasma exosomes are mediated by sympathetic nervous system (SNS) activation of alpha-1 adrenergic receptors (ADRs), since drug-mediated blockade of the receptors significantly attenuates the stress-induced modifications of exosomal Hsp72 and miR-142-5p. Together, these findings demonstrate that activation of the acute stress response modifies the proteomic and miRNA profile of exosomes released into the circulation.


Assuntos
Exossomos/metabolismo , Proteínas de Choque Térmico HSP72/metabolismo , MicroRNAs/metabolismo , Estresse Fisiológico/fisiologia , Estresse Psicológico/metabolismo , Animais , Citocinas/metabolismo , Eletrochoque , Proteínas de Choque Térmico HSP72/genética , Masculino , MicroRNAs/genética , Ratos , Ratos Endogâmicos F344 , Receptores Adrenérgicos alfa 1/metabolismo , Estresse Psicológico/genética , Sistema Nervoso Simpático/metabolismo
2.
Front Behav Neurosci ; 7: 37, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23717271

RESUMO

Serotonin (5-HT) is implicated in the development of stress-related mood disorders in humans. Physical activity reduces the risk of developing stress-related mood disorders, such as depression and anxiety. In rats, 6 weeks of wheel running protects against stress-induced behaviors thought to resemble symptoms of human anxiety and depression. The mechanisms by which exercise confers protection against stress-induced behaviors, however, remain unknown. One way by which exercise could generate stress resistance is by producing plastic changes in gene expression in the dorsal raphe nucleus (DRN). The DRN has a high concentration of 5-HT neurons and is implicated in stress-related mood disorders. The goal of the current experiment was to identify changes in the expression of genes that could be novel targets of exercise-induced stress resistance in the DRN. Adult, male F344 rats were allowed voluntary access to running wheels for 6 weeks; exposed to inescapable stress or no stress; and sacrificed immediately and 2 h after stressor termination. Laser capture micro dissection selectively sampled the DRN. mRNA expression was measured using the whole genome Affymetrix microarray. Comprehensive data analyses of gene expression included differential gene expression, log fold change (LFC) contrast analyses with False Discovery Rate correction, KEGG and Wiki Web Gestalt pathway enrichment analyses, and Weighted Gene Correlational Network Analysis (WGCNA). Our results suggest that physically active rats exposed to stress modulate expression of twice the number of genes, and display a more rapid and strongly coordinated response, than sedentary rats. Bioinformatics analyses revealed several potential targets of stress resistance including genes that are related to immune processes, tryptophan metabolism, and circadian/diurnal rhythms.

3.
PLoS One ; 7(9): e46118, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23049953

RESUMO

Physical activity reduces the incidence and severity of psychiatric disorders such as anxiety and depression. Similarly, voluntary wheel running produces anxiolytic- and antidepressant-like effects in rodent models. The specific neurobiological mechanisms underlying the beneficial properties of exercise, however, remain unclear. One relevant pharmacological target in the treatment of psychiatric disorders is the 5-HT(2C) receptor (5-HT(2C)R). Consistent with data demonstrating the anxiogenic consequences of 5-HT(2C)R activation in humans and rodents, we have previously reported that site-specific administration of the selective 5-HT(2C)R agonist CP-809101 in the lateral/basolateral amygdala (BLA) increases shock-elicited fear while administration of CP-809101 in the dorsal striatum (DS) interferes with shuttle box escape learning. These findings suggest that activation of 5-HT(2C)R in discrete brain regions contributes to specific anxiety- and depression-like behaviors and may indicate potential brain sites involved in the anxiolytic and antidepressant effects of exercise. The current studies tested the hypothesis that voluntary wheel running reduces the behavioral consequences of 5-HT(2C)R activation in the BLA and DS, specifically enhanced shock-elicited fear and interference with shuttle box escape learning. After 6 weeks of voluntary wheel running or sedentary conditions, the selective 5-HT(2C)R agonist CP-809101 was microinjected into either the BLA or the DS of adult Fischer 344 rats, and shock-elicited fear and shuttle box escape learning was assessed. Additionally, in-situ hybridization was used to determine if 6 weeks of voluntary exercise changed levels of 5-HT(2C)R mRNA. We found that voluntary wheel running reduced the behavioral effects of CP-809101 and reduced levels of 5-HT(2C)R mRNA in both the BLA and the DS. The current data indicate that expression of 5-HT(2C)R mRNA in discrete brain sites is sensitive to physical activity status of the organism, and implicates the 5-HT(2C)R as a target for the beneficial effects of physical activity on mental health.


Assuntos
Tonsila do Cerebelo/metabolismo , Ansiedade/metabolismo , Encéfalo/metabolismo , Encéfalo/fisiologia , Depressão/metabolismo , Condicionamento Físico Animal/fisiologia , Receptor 5-HT2C de Serotonina/metabolismo , Tonsila do Cerebelo/fisiologia , Animais , Hibridização In Situ , Masculino , Distribuição Aleatória , Ratos , Receptor 5-HT2C de Serotonina/genética
4.
Behav Brain Res ; 233(2): 314-21, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22610051

RESUMO

Humans who exercise are less likely to suffer from stress-related mood disorders. Similarly, rats allowed voluntary access to running wheels have constrained corticosterone responses to mild stressors and are protected against several behavioral consequences of uncontrollable stress which resemble symptoms of human anxiety and depression, including exaggerated fear and deficits in shuttle box escape learning. Although exercise conveys clear stress resistance, the duration of time the protective effects of exercise against the behavioral consequences of uncontrollable stress persist following exercise cessation is unknown. The current studies investigated (1) whether exercise-induced stress resistance extends to social avoidance, another anxiety-like behavior elicited by uncontrollable stressor exposure, and (2) the duration of time the protective effects of exercise persist following forced cessation of exercise. Six weeks of wheel running constrained the increase in corticosterone elicited by social exploration testing, and prevented the reduction in social exploration, exaggerated shock-elicited fear, and deficits in escape learning produced by uncontrollable stress. The protective effect of voluntary exercise against stress-induced interference with escape learning persisted for 15 days, but was lost by 25 days, following cessation of exercise. An anxiogenic effect, as revealed by a reduction in social exploration and an increase in fear behavior immerged as a function of time following cessation of exercise. Results demonstrate that the protective effect of voluntary exercise against the behavioral consequences of uncontrollable stress extends to include social avoidance, and can persist for several days following exercise cessation despite an increase in anxiety produced by forced cessation of exercise.


Assuntos
Condicionamento Físico Animal/efeitos adversos , Condicionamento Físico Animal/métodos , Estresse Psicológico/reabilitação , Análise de Variância , Animais , Peso Corporal , Corticosterona/sangue , Modelos Animais de Doenças , Eletrochoque/efeitos adversos , Reação de Fuga/fisiologia , Reação de Congelamento Cataléptica/fisiologia , Locomoção/fisiologia , Masculino , Ratos , Ratos Endogâmicos F344 , Comportamento Social , Estresse Psicológico/etiologia
5.
Behav Brain Res ; 217(2): 354-62, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21070820

RESUMO

The mesolimbic reward pathway is implicated in stress-related psychiatric disorders and is a potential target of plasticity underlying the stress resistance produced by repeated voluntary exercise. It is unknown, however, whether rats find long-term access to running wheels rewarding, or if repeated voluntary exercise reward produces plastic changes in mesolimbic reward neurocircuitry. In the current studies, young adult, male Fischer 344 rats allowed voluntary access to running wheels for 6 weeks, but not 2 weeks, found wheel running rewarding, as measured by conditioned place preference (CPP). Consistent with prior reports and the behavioral data, 6 weeks of wheel running increased ΔFosB/FosB immunoreactivity in the nucleus accumbens (Acb). In addition, semi quantitative in situ hybridization revealed that 6 weeks of wheel running, compared to sedentary housing, increased tyrosine hydroxylase (TH) mRNA levels in the ventral tegmental area (VTA), increased delta opioid receptor (DOR) mRNA levels in the Acb shell, and reduced levels of dopamine receptor (DR)-D2 mRNA in the Acb core. Results indicate that repeated voluntary exercise is rewarding and alters gene transcription in mesolimbic reward neurocircuitry. The duration-dependent effects of wheel running on CPP suggest that as the weeks of wheel running progress, the rewarding effects of a night of voluntary wheel running might linger longer into the inactive cycle thus providing stronger support for CPP. The observed plasticity could contribute to the mechanisms by which exercise reduces the incidence and severity of substance abuse disorders, changes the rewarding properties of drugs of abuse, and facilitates successful coping with stress.


Assuntos
Condicionamento Operante/fisiologia , Sistema Límbico/citologia , Sistema Límbico/fisiologia , Plasticidade Neuronal/fisiologia , Recompensa , Corrida/fisiologia , Animais , Extinção Psicológica , Regulação da Expressão Gênica/fisiologia , Masculino , Rede Nervosa/metabolismo , Vias Neurais/fisiologia , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Endogâmicos F344 , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Receptores Opioides delta/genética , Receptores Opioides delta/metabolismo , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA