Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurol ; 270(1): 386-393, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36100730

RESUMO

OBJECTIVE: This experiment tested if balance performance differed between a standardized treadmill surface perturbation task and a clinical pull test and was affected by medication or the presence of body weight support in people with Parkinson's disease (PD). METHODS: Twenty-seven individuals were tested (14 PD in both ON- and OFF-medication states). Clinical pull test and rapid forward (backward fall) translations of the support surface were applied to induce postural reactions requiring at least 1 step to restore balance. The effects of pull type (clinical vs. treadmill), partial bodyweight support (0 vs 20% body weight) and group (control, PD ON-meds and PD OFF-meds) on reactive stepping as well as practice/learning effect were examined. The number of steps taken and the first step duration were entered in linear repeated-measures mixed-effect models separately. RESULTS: The effects of pull type, group, and bodyweight support were all significant in both metrics, as was ON- vs. OFF-medication. A significant interaction term (group x pull type) was found in the first step duration, showing that the group difference was greater in treadmill compared to the clinical pull test. A significant practice effect was also observed within and across testing sessions. CONCLUSIONS: A standardized treadmill perturbation performed slightly better than the classical pull test in distinguishing between groups, and partial weight support did not substantially degrade the test's performance to detect the balance deficits in people with PD.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico , Doença de Parkinson/tratamento farmacológico , Equilíbrio Postural , Aprendizagem , Peso Corporal
2.
eNeuro ; 9(6)2022.
Artigo em Inglês | MEDLINE | ID: mdl-36270803

RESUMO

The ability of humans to coordinate stereotyped, alternating movements between the two legs during bipedal walking is a complex motor behavior that requires precisely timed activities across multiple nodes of the supraspinal network. Understanding of the neural network dynamics that underlie natural walking in humans is limited. We investigated cortical and subthalamic neural activities during overground walking and evaluated spectral biomarkers to decode the gait cycle in three patients with Parkinson's disease without gait disturbances. Patients were implanted with chronic bilateral deep brain stimulation (DBS) leads in the subthalamic nucleus (STN) and electrocorticography paddles overlaying the primary motor and somatosensory cortices. Local field potentials were recorded from these areas while the participants performed overground walking and synchronized to external gait kinematic sensors. We found that the STN displays increased low-frequency (4-12 Hz) spectral power during the period before contralateral leg swing. Furthermore, STN shows increased theta frequency (4-8 Hz) coherence with the primary motor through the initiation and early phase of contralateral leg swing. Additional analysis revealed that each patient had specific frequency bands that could detect a significant difference between left and right initial leg swing. Our findings indicate that there are alternating spectral changes between the two hemispheres in accordance with the gait cycle. In addition, we identified patient-specific, gait-related biomarkers in both the STN and cortical areas at discrete frequency bands that may be used to drive adaptive DBS to improve gait dysfunction in patients with Parkinson's disease.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Núcleo Subtalâmico/fisiologia , Marcha/fisiologia , Caminhada
3.
Artigo em Inglês | MEDLINE | ID: mdl-35663826

RESUMO

Freezing of gait (FOG) is a particularly debilitating symptom of Parkinson's disease (PD) and is often refractory to treatment. A striking feature of FOG is that external sensory cues can be used to overcome freezing and improve gait. Local field potentials (LFPs) recorded from the subthalamic nucleus (STN) and globus pallidus (GP) show that beta-band power modulates with gait phase. In the STN, beta-band oscillations are modulated by external cues, but it is unknown if this relationship holds in the globus pallidus (GP). Here we report LFP data recorded from the left GP, using a Medtronic PC + S device, in a 68-year-old man with PD and FOG during treadmill walking. A "stepping stone" task was used during which stepping was cued using visual targets of constant color or targets that unpredictably changed color, requiring a step length adjustment. Gait performance was quantified using measures of treadmill ground reaction forces and center of pressure and body kinematics from video monitoring. Beta-band power (12-30 Hz) and number of freezing episodes were measured. Cues which unpredictably changed color improved FOG more than conventional cues and were associated with greater modulation of beta-band power in phase with gait. This preliminary finding suggests that cueing-induced improvement of FOG may relate to beta-band modulation.

4.
Gait Posture ; 93: 96-101, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35121487

RESUMO

BACKGROUND: Treadmills provide a safe and convenient way to study the gait of people with Parkinson's disease (PD), but outcome measures derived from treadmill gait may differ from overground walking. OBJECTIVE: To investigate how the relationships between gait metrics and walking speed vary between overground and treadmill walking in people with PD and healthy controls. METHODS: We compared 29 healthy controls to 27 people with PD in the OFF-medication state. Subjects first walked overground on an instrumented gait walkway, then on an instrumented treadmill at 85%, 100% and 115% of their overground walking speed. Average stride length and cadence were computed for each subject in both overground and treadmill walking. RESULTS: Stride length and cadence both differed between overground and treadmill walking. Regressions of stride length and cadence on gait speed showed a log-log relationship for both overground and treadmill gait in both PD and control groups. The difference between the PD and control groups during overground gait was maintained for treadmill gait, not only when treadmill speed matched overground speed, but also with ± 15% variation in treadmill speed from that value. SIGNIFICANCE: These results show that the impact of PD on stride length and cadence and their relationship to gait speed is preserved in treadmill as compared to overground walking. We conclude that a treadmill protocol is suitable for laboratory use in studies of PD gait therapeutics.


Assuntos
Doença de Parkinson , Benchmarking , Teste de Esforço , Marcha , Humanos , Doença de Parkinson/complicações , Caminhada , Velocidade de Caminhada
5.
Front Hum Neurosci ; 15: 721076, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34764858

RESUMO

Little is known about the electrophysiological activity of the spinal cord during voluntary movement control in humans. We present a novel method for recording electrophysiological activity from the human spinal cord using implanted epidural electrodes during naturalistic movements including overground walking. Spinal electrograms (SEGs) were recorded from epidural electrodes implanted as part of a test trial for patients with chronic pain undergoing evaluation for spinal cord stimulation. Externalized ends of the epidural leads were connected to an external amplifier to capture SEGs. Electromyographic and accelerometry data from the upper and lower extremities were collected using wireless sensors and synchronized to the SEG data. Patients were instructed to perform various arm and leg movements while SEG and kinematic data were collected. This study proves the safety and feasibility of performing epidural spinal recordings from human subjects performing movement tasks.

6.
Front Hum Neurosci ; 15: 714256, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34322004

RESUMO

Closed-loop neurostimulation is a promising therapy being tested and clinically implemented in a growing number of neurological and psychiatric indications. This therapy is enabled by chronically implanted, bidirectional devices including the Medtronic Summit RC+S system. In order to successfully optimize therapy for patients implanted with these devices, analyses must be conducted offline on the recorded neural data, in order to inform optimal sense and stimulation parameters. The file format, volume, and complexity of raw data from these devices necessitate conversion, parsing, and time reconstruction ahead of time-frequency analyses and modeling common to standard neuroscientific analyses. Here, we provide an open-source toolbox written in Matlab which takes raw files from the Summit RC+S and transforms these data into a standardized format amenable to conventional analyses. Furthermore, we provide a plotting tool which can aid in the visualization of multiple data streams and sense, stimulation, and therapy settings. Finally, we describe an analysis module which replicates RC+S on-board power computations, a functionality which can accelerate biomarker discovery. This toolbox aims to accelerate the research and clinical advances made possible by longitudinal neural recordings and adaptive neurostimulation in people with neurological and psychiatric illnesses.

7.
J Neuroeng Rehabil ; 18(1): 83, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34020662

RESUMO

BACKGROUND: Deep brain stimulation (DBS) is a treatment option for Parkinson's disease patients when medication does not sufficiently manage their symptoms. DBS can be a highly effect therapy, but only after a time-consuming trial-and-error stimulation parameter adjustment process that is susceptible to clinician bias. This trial-and-error process will be further prolonged with the introduction of segmented electrodes that are now commercially available. New approaches to optimizing a patient's stimulation parameters, that can also handle the increasing complexity of new electrode and stimulator designs, is needed. METHODS: To improve DBS parameter programming, we explored two semi-automated optimization approaches: a Bayesian optimization (BayesOpt) algorithm to efficiently determine a patient's optimal stimulation parameter for minimizing rigidity, and a probit Gaussian process (pGP) to assess patient's preference. Quantified rigidity measurements were obtained using a robotic manipulandum in two participants over two visits. Rigidity was measured, in 5Hz increments, between 10-185Hz (total 30-36 frequencies) on the first visit and at eight BayesOpt algorithm-selected frequencies on the second visit. The participant was also asked their preference between the current and previous stimulation frequency. First, we compared the optimal frequency between visits with the participant's preferred frequency. Next, we evaluated the efficiency of the BayesOpt algorithm, comparing it to random and equal interval selection of frequency. RESULTS: The BayesOpt algorithm estimated the optimal frequency to be the highest tolerable frequency, matching the optimal frequency found during the first visit. However, the participants' pGP models indicate a preference at frequencies between 70-110 Hz. Here the stimulation frequency is lowest that achieves nearly maximal suppression of rigidity. BayesOpt was efficient, estimating the rigidity response curve to stimulation that was almost indistinguishable when compared to the longer brute force method. CONCLUSIONS: These results provide preliminary evidence of the feasibility to use BayesOpt for determining the optimal frequency, while pGP patient's preferences include more difficult to measure outcomes. Both novel approaches can shorten DBS programming and can be expanded to include multiple symptoms and parameters.


Assuntos
Algoritmos , Teorema de Bayes , Estimulação Encefálica Profunda/métodos , Doença de Parkinson/terapia , Adulto , Estudos de Viabilidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
9.
Gait Posture ; 84: 205-208, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33360643

RESUMO

BACKGROUND: Assessing postural stability in Parkinson's disease (PD) often relies on measuring the stepping response to an imposed postural perturbation. The standard clinical technique relies on a brisk backwards pull at the shoulders by the examiner and judgement by a trained rater. In research settings, various quantitative measures and perturbation directions have been tested, but it is unclear which metrics and perturbation direction differ most between people with PD and controls. OBJECTIVES: (1) Use standardized forward vs. backward perturbations of a support surface to evaluate reactive stepping performance between PD and control participants. (2) Evaluate the utility of using principal components analysis to capture the dynamics of the reactive response and differences between groups. METHODS: Sixty-two individuals participated (40 mild-to-moderate PD, off medication). Standardized rapid translations of the support surface were applied, requiring at least one step, backward or forward, to restore balance. The number of steps taken and the projection of the first principal component (PC1) of the center of pressure (COP) time series were entered in linear repeated-measures mixed effect models. RESULTS: Forward falls required significantly fewer steps to recover than backward falls. PC1 captured more than half of the variance in the COP trajectory. Analysis of the PC1 projection revealed a significant interaction effect of group (PD vs. controls) by direction, such that there was a group difference in forward stepping, but not backward. SIGNIFICANCE: Forward reactive stepping in PD differed from controls more than backward-stepping. PC1 projections of the COP trajectory capture the dynamics of the postural response and differ between PD and controls.


Assuntos
Doença de Parkinson/fisiopatologia , Equilíbrio Postural/fisiologia , Feminino , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA