Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cancer Ther ; 20(3): 589-601, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33298589

RESUMO

Oncolytic viruses (OV) have been shown to activate the antitumor functions of specific immune cells like T cells. Here, we show OV can also reprogram tumor-associated macrophage (TAM) to a less immunosuppressive phenotype. Syngeneic, immunocompetent mouse models of primary breast cancer were established using PyMT-TS1, 4T1, and E0771 cell lines, and a metastatic model of breast cancer was established using the 4T1 cell line. Tumor growth and overall survival was assessed following intravenous administration of the OV, HSV1716 (a modified herpes simplex virus). Infiltration and function of various immune effector cells was assessed by NanoString, flow cytometry of dispersed tumors, and immunofluorescence analysis of tumor sections. HSV1716 administration led to marked tumor shrinkage in primary mammary tumors and a decrease in metastases. This was associated with a significant increase in the recruitment/activation of cytotoxic T cells, a reduction in the presence of regulatory T cells and the reprograming of TAMs towards a pro-inflammatory, less immunosuppressive phenotype. These findings were supported by in vitro data demonstrating that human monocyte-derived macrophages host HSV1716 replication, and that this led to immunogenic macrophage lysis. These events were dependent on macrophage expression of proliferating cell nuclear antigen (PCNA). Finally, the antitumor effect of OV was markedly diminished when TAMs were depleted using clodronate liposomes. Together, our results show that TAMs play an essential role in support of the tumoricidal effect of the OV, HSV1716-they both host viral replication via a novel, PCNA-dependent mechanism and are reprogramed to express a less immunosuppressive phenotype.


Assuntos
Macrófagos/metabolismo , Vírus Oncolíticos/patogenicidade , Animais , Modelos Animais de Doenças , Feminino , Humanos , Neoplasias Mamárias Animais , Camundongos , Transfecção
2.
Nat Immunol ; 21(6): 696, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32303726

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
Nat Immunol ; 21(6): 615-625, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32251403

RESUMO

Increasing age alters innate immune-mediated responses; however, the mechanisms underpinning these changes in humans are not fully understood. Using a human dermal model of acute inflammation, we found that, although inflammatory onset is similar between young and elderly individuals, the resolution phase was substantially impaired in elderly individuals. This arose from a reduction in T cell immunoglobulin mucin receptor-4 (TIM-4), a phosphatidylserine receptor expressed on macrophages that enables the engulfment of apoptotic bodies, so-called efferocytosis. Reduced TIM-4 in elderly individuals was caused by an elevation in macrophage p38 mitogen-activated protein kinase (MAPK) activity. Administering an orally active p38 inhibitor to elderly individuals rescued TIM-4 expression, cleared apoptotic bodies and restored a macrophage resolution phenotype. Thus, inhibiting p38 in elderly individuals rejuvenated their resolution response to be more similar to that of younger people. This is the first resolution defect identified in humans that has been successfully reversed, thereby highlighting the tractability of targeting pro-resolution biology to treat diseases driven by chronic inflammation.


Assuntos
Inflamação/etiologia , Inflamação/metabolismo , Fagocitose/imunologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Fatores Etários , Idoso , Animais , Apoptose , Vesícula/imunologia , Vesícula/metabolismo , Vesícula/patologia , Cantaridina , Expressão Gênica , Humanos , Imunidade Inata , Inflamação/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Neutrófilos/patologia , Receptores de Superfície Celular/metabolismo , Transdução de Sinais
4.
Cell Rep ; 26(4): 984-995.e6, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30673619

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a very common indication for liver transplantation. How fat-rich diets promote progression from fatty liver to more damaging inflammatory and fibrotic stages is poorly understood. Here, we show that disrupting phosphorylation at Ser196 (S196A) in the liver X receptor alpha (LXRα, NR1H3) retards NAFLD progression in mice on a high-fat-high-cholesterol diet. Mechanistically, this is explained by key histone acetylation (H3K27) and transcriptional changes in pro-fibrotic and pro-inflammatory genes. Furthermore, S196A-LXRα expression reveals the regulation of novel diet-specific LXRα-responsive genes, including the induction of Ces1f, implicated in the breakdown of hepatic lipids. This involves induced H3K27 acetylation and altered LXR and TBLR1 cofactor occupancy at the Ces1f gene in S196A fatty livers. Overall, impaired Ser196-LXRα phosphorylation acts as a novel nutritional molecular sensor that profoundly alters the hepatic H3K27 acetylome and transcriptome during NAFLD progression placing LXRα phosphorylation as an alternative anti-inflammatory or anti-fibrotic therapeutic target.


Assuntos
Gorduras na Dieta/efeitos adversos , Receptores X do Fígado/metabolismo , Mutação de Sentido Incorreto , Substituição de Aminoácidos , Animais , Gorduras na Dieta/farmacologia , Receptores X do Fígado/genética , Camundongos , Camundongos Transgênicos , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Fosforilação/efeitos dos fármacos , Fosforilação/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA