Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Microb Biotechnol ; 17(8): e14542, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39096198

RESUMO

The human gut microbiota influences its host via multiple molecular pathways, including immune system interactions, the provision of nutrients and regulation of host physiology. Dietary fibre plays a crucial role in maintaining a healthy microbiota as its primary nutrient and energy source. Industrialisation has led to a massive decrease of habitual fibre intake in recent times, and fibre intakes across the world are below the national recommendations. This goes hand in hand with other factors in industrialised societies that may negatively affect the gut microbiota, such as medication and increased hygiene. Non-communicable diseases are on the rise in urbanised societies and the optimisation of dietary fibre intake can help to improve global health and prevent disease. Early life interventions shape the developing microbiota to counteract malnutrition, both in the context of industrialised nations with an overabundance of cheap, highly processed foods, as well as in Low- and Middle-Income Countries (LMICs). Adequate fibre intake should, however, be maintained across the life course to promote health. Here we will discuss the current state of dietary fibre research in the global context and consider different intervention approaches.


Assuntos
Fibras na Dieta , Microbioma Gastrointestinal , Saúde Global , Humanos
2.
AIMS Microbiol ; 10(2): 311-319, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38919716

RESUMO

The microbial community of the human large intestine mainly ferments dietary fiber to short chain fatty acids (SCFAs), which are efficiently absorbed by the host. The three major SCFAs (acetate, propionate, and butyrate) have different fates within the body and different effects on health. A recent analysis of 10 human volunteer studies established that the proportions of these SCFA in fecal samples significantly shifted towards butyrate as the overall concentration of SCFA increased. Butyrate plays a key role in gut health and is preferentially utilized as an energy source by the colonic epithelium. Here we discuss possible mechanisms that underlie this 'butyrate shift'; these include the selection for butyrate-producing bacteria within the microbiota by certain types of fiber, and the possibility of additional butyrate formation from lactate and acetate by metabolite cross-feeding. However, a crucial factor appears to be the pH in the proximal colon, which decreases as the SCFA concentrations increase. A mildly acidic pH has been shown to have an important impact on microbial competition and on the stoichiometry of butyrate production. Understanding these complex interactions has been greatly aided by the refinement of theoretical models of the colonic microbiota that assume a small number (10) of microbial functional groups (MFGs).

3.
PLoS One ; 19(2): e0290052, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38422016

RESUMO

Many commensal gut microbes are recognized for their potential to synthesize vitamin B12, offering a promising avenue to address deficiencies through probiotic supplementation. While bioinformatics tools aid in predicting B12 biosynthetic potential, empirical validation remains crucial to confirm production, identify cobalamin vitamers, and establish biosynthetic yields. This study investigates vitamin B12 production in three human colonic bacterial species: Anaerobutyricum hallii DSM 3353, Roseburia faecis DSM 16840, and Anaerostipes caccae DSM 14662, along with Propionibacterium freudenreichii DSM 4902 as a positive control. These strains were selected for their potential use as probiotics, based on speculated B12 production from prior bioinformatic analyses. Cultures were grown in M2GSC, chemically defined media (CDM), and Gorse extract medium (GEM). The composition of GEM was similar to CDM, except that the carbon and nitrogen sources were replaced with the protein-depleted liquid waste obtained after subjecting Gorse to a leaf protein extraction process. B12 yields were quantified using liquid chromatography with tandem mass spectrometry. The results suggested that the three butyrate-producing strains could indeed produce B12, although the yields were notably low and were detected only in the cell lysates. Furthermore, B12 production was higher in GEM compared to M2GSC medium. The positive control, P. freudenreichii DSM 4902 produced B12 at concentrations ranging from 7 ng mL-1 to 12 ng mL-1. Univariate-scaled Principal Component Analysis (PCA) of data from previous publications investigating B12 production in P. freudenreichii revealed that B12 yields diminished when the carbon source concentration was ≤30 g L-1. In conclusion, the protein-depleted wastes from the leaf protein extraction process from Gorse can be valorised as a viable substrate for culturing B12-producing colonic gut microbes. Furthermore, this is the first report attesting to the ability of A. hallii, R. faecis, and A. caccae to produce B12. However, these microbes seem unsuitable for industrial applications owing to low B12 yields.


Assuntos
Microbioma Gastrointestinal , Ulex , Humanos , Vitamina B 12 , Benzimidazóis , Carbono , Suplementos Nutricionais
4.
Environ Microbiol ; 25(8): 1484-1504, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36912501

RESUMO

Dietary fibre is a major energy source for the human gut microbiota, but it is unclear to what extent the fibre source and complexity affect microbial growth and metabolite production. Cell wall material and pectin were extracted from five different dicotyledon plant sources, apples, beet leaves, beetroots, carrots and kale, and compositional analysis revealed differences in the monosaccharide composition. Human faecal batch incubations were conducted with 14 different substrates, including the plant extracts, wheat bran and commercially available carbohydrates. Microbial activity was determined for up to 72 h by measuring gas and fermentation acid production, total bacteria (by qPCR) and microbial community composition by 16S rRNA amplicon sequencing. The more complex substrates gave rise to more microbiota variation compared with the pectins. The comparison of different plant organs showed that the leaves (beet leaf and kale) and roots (carrot and beetroot) did not give rise to similar bacterial communities. Rather, the compositional features of the plants, such as high arabinan levels in beet and high galactan levels in carrot, appear to be major predictors of bacterial enrichment on the substrates. Thus, in-depth knowledge on dietary fibre composition should aid the design of diets focused on optimizing the microbiota.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Fibras na Dieta/metabolismo , Bactérias , Fezes/microbiologia , Fermentação , Pectinas/metabolismo
5.
Br J Nutr ; 130(9): 1521-1536, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36847278

RESUMO

Only 6 to 8 % of the UK adults meet the daily recommendation for dietary fibre. Fava bean processing lead to vast amounts of high-fibre by-products such as hulls. Bean hull fortified bread was formulated to increase and diversify dietary fibre while reducing waste. This study assessed the bean hull: suitability as a source of dietary fibre; the systemic and microbial metabolism of its components and postprandial events following bean hull bread rolls. Nine healthy participants (53·9 ± 16·7 years) were recruited for a randomised controlled crossover study attending two 3 days intervention sessions, involving the consumption of two bread rolls per day (control or bean hull rolls). Blood and faecal samples were collected before and after each session and analysed for systemic and microbial metabolites of bread roll components using targeted LC-MS/MS and GC analysis. Satiety, gut hormones, glucose, insulin and gastric emptying biomarkers were also measured. Two bean hull rolls provided over 85 % of the daily recommendation for dietary fibre; but despite being a rich source of plant metabolites (P = 0·04 v. control bread), these had poor systemic bioavailability. Consumption of bean hull rolls for 3 days significantly increased plasma concentration of indole-3-propionic acid (P = 0·009) and decreased faecal concentration of putrescine (P = 0·035) and deoxycholic acid (P = 0·046). However, it had no effect on postprandial plasma gut hormones, bacterial composition and faecal short chain fatty acids amount. Therefore, bean hulls require further processing to improve their bioactives systemic availability and fibre fermentation.


Assuntos
Fabaceae , Hormônios Gastrointestinais , Adulto , Humanos , Voluntários Saudáveis , Putrescina , Pão/análise , Cromatografia Líquida , Estudos Cross-Over , Espectrometria de Massas em Tandem , Fibras na Dieta/análise , Fabaceae/metabolismo , Ácido Desoxicólico , Glicemia/análise
7.
Neurogastroenterol Motil ; 34(4): e14241, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34431172

RESUMO

BACKGROUND: Short-term trials demonstrate the low FODMAP diet improves symptoms of irritable bowel syndrome (IBS) but impacts nutrient intake and the gastrointestinal microbiota. The aim of this study was to investigate clinical symptoms, nutrient intake, and microbiota of patients with IBS 12 months after starting a low FODMAP diet. METHODS: Participants enrolled in a previous short-term clinical trial and who had been through structured FODMAP restriction, reintroduction, and personalization were invited to participate in a follow-up study at one time point at 12 months. Gastrointestinal symptoms, stool output, dietary intake, and quality of life were recorded. Stool samples were collected and analyzed for microbiota (qPCR) and short-chain fatty acids (SCFA). Data were compared with baseline (prior to any intervention in the original clinical trial) using non-parametric statistics. KEY RESULTS: Eighteen participants were included in the study. Adequate relief of symptoms occurred in 5/18 (28%) at baseline and increased to 12/18 (67%) following long-term personalized low FODMAP diet (p = 0.039). There was a reduction in IBS-SSS total score between baseline (median 227, IQR 99) and long term (154, 89; p < 0.001). Bifidobacteria abundance was not different between baseline (median 9.29 log10 rRNA genes/g, IQR 1.45) and long term (9.20 log10 rRNA genes/g, 1.41; p = 0.766, q = 0.906); however, there were lower concentrations of total SCFA, acetate, propionate, and butyrate. CONCLUSIONS: In this long-term analysis, two thirds of patients reported adequate relief of symptoms after 12 months of personalized low FODMAP diet that did not result in differences from baseline in Bifidobacteria. FODMAP reintroduction and personalization may normalize some of the effects of short-term FODMAP restriction.


Assuntos
Síndrome do Intestino Irritável , Bifidobacterium/genética , Dieta , Dieta com Restrição de Carboidratos , Ácidos Graxos Voláteis , Seguimentos , Humanos , Síndrome do Intestino Irritável/diagnóstico , Qualidade de Vida
8.
Am J Respir Crit Care Med ; 205(6): 641-650, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34919021

RESUMO

Rationale: In murine models, microbial exposures induce protection from experimental allergic asthma through innate immunity. Objectives: Our aim was to assess the association of early life innate immunity with the development of asthma in children at risk. Methods: In the PASTURE farm birth cohort, innate T-helper cell type 2 (Th2), Th1, and Th17 cytokine expression at age 1 year was measured after stimulation of peripheral blood mononuclear cells with LPS in n = 445 children. Children at risk of asthma were defined based on single-nucleotide polymorphisms at the 17q21 asthma gene locus. Specifically, we used the SNP rs7216389 in the GSDMB gene. Wheeze in the first year of life was assessed by weekly diaries and asthma by questionnaire at age 6 years. Measurements and Main Results: Not all cytokines were detectable in all children after LPS stimulation. When classifying detectability of cytokines by latent class analysis, carrying the 17q21 risk allele rs7216389 was associated with risk of wheeze only in the class with the lowest level of LPS-induced activation: odds ratio (OR), 1.89; 95% confidence interval [CI], 1.13-3.16; P = 0.015. In contrast, in children with high cytokine activation after LPS stimulation, no association of the 17q21 risk allele with wheeze (OR, 0.63; 95% CI, 0.29-1.40; P = 0.258, P = 0.034 for interaction) or school-age asthma was observed. In these children, consumption of unprocessed cow's milk was associated with higher cytokine activation (OR, 3.37; 95% CI, 1.56-7.30; P = 0.002), which was in part mediated by the gut microbiome. Conclusions: These findings suggest that within the 17q21 genotype, asthma risk can be mitigated by activated immune responses after innate stimulation, which is partly mediated by a gut-immune axis.


Assuntos
Asma , Cromossomos Humanos Par 17 , Lipopolissacarídeos , Alelos , Animais , Asma/genética , Bovinos , Citocinas/genética , Feminino , Humanos , Imunidade Inata , Leucócitos Mononucleares , Camundongos , Sons Respiratórios/genética
9.
Artigo em Inglês | MEDLINE | ID: mdl-39295779

RESUMO

The human large intestinal microbiota thrives on dietary carbohydrates that are converted to a range of fermentation products. Short-chain fatty acids (acetate, propionate and butyrate) are the dominant fermentation acids that accumulate to high concentrations in the colon and they have health-promoting effects on the host. Although many gut microbes can also produce lactate, it usually does not accumulate in the healthy gut lumen. This appears largely to be due to the presence of a relatively small number of gut microbes that can utilise lactate and convert it to propionate, butyrate or acetate. There is increasing evidence that these microbes play important roles in maintaining a healthy gut environment. In this review, we will provide an overview of the different microbes involved in lactate metabolism within the gut microbiota, including biochemical pathways utilised and their underlying energetics, as well as regulation of the corresponding genes. We will further discuss the potential consequences of perturbation of the microbiota leading to lactate accumulation in the gut and associated disease states and how lactate-utilising bacteria may be employed to treat such diseases.

10.
Artigo em Inglês | MEDLINE | ID: mdl-39295782

RESUMO

Metabolites produced by microbial fermentation in the human intestine, especially short-chain fatty acids (SCFAs), are known to play important roles in colonic and systemic health. Our aim here was to advance our understanding of how and why their concentrations and proportions vary between individuals. We have analysed faecal concentrations of microbial fermentation acids from 10 human volunteer studies, involving 163 subjects, conducted at the Rowett Institute, Aberdeen, UK over a 7-year period. In baseline samples, the % butyrate was significantly higher, whilst % iso-butyrate and % iso-valerate were significantly lower, with increasing total SCFA concentration. The decreasing proportions of iso-butyrate and iso-valerate, derived from amino acid fermentation, suggest that fibre intake was mainly responsible for increased SCFA concentrations. We propose that the increase in % butyrate among faecal SCFA is largely driven by a decrease in colonic pH resulting from higher SCFA concentrations. Consistent with this, both total SCFA and % butyrate increased significantly with decreasing pH across five studies for which faecal pH measurements were available. Colonic pH influences butyrate production through altering the stoichiometry of butyrate formation by butyrate-producing species, resulting in increased acetate uptake and butyrate formation, and facilitating increased relative abundance of butyrate-producing species (notably Roseburia and Eubacterium rectale).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA