Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Pathogens ; 12(8)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37623982

RESUMO

African swine fever virus (ASFV) is known to be very stable and can remain infectious over long periods of time especially at low temperatures and within different matrices, particularly those containing animal-derived organic material. However, there are some gaps in our knowledge pertaining to the survivability and infectivity of ASFV in groundwater. This study aims to determine the stability and infectivity of the cell culture-adapted ASFV strain BA71V by plaque assay after incubation of the virus within river water samples at three different environmentally relevant temperatures (4 °C, 15 °C, and 21 °C) over the course of 42 days. The results from this study indicate that ASFV can remain stable and infectious when maintained at 4 °C in river water for more than 42 days, but as incubation temperatures are increased, the stability is reduced, and the virus is no longer able to form plaques after 28 days and 14 days, respectively, when stored at 15 °C and 21 °C. Characterizing the survivability of ASFV in groundwater can allow us to develop more appropriate inactivation and disinfection methods to support disease control and mitigate ASFV outbreaks.

2.
Commun Biol ; 5(1): 61, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35039618

RESUMO

Replication of many positive-sense RNA viruses occurs within intracellular membrane-associated compartments. These are thought to provide a favourable environment for replication to occur, concentrating essential viral structural and nonstructural components, as well as protecting these components from host-cell pathogen recognition and innate immune responses. However, the details of the molecular interactions and dynamics within these structures is very limited. One of the key components of the replication machinery is the RNA-dependent RNA polymerase, RdRp. This enzyme has been shown to form higher-order fibrils in vitro. Here, using the RdRp from foot-and-mouth disease virus (termed 3Dpol), we report fibril structures, solved at ~7-9 Å resolution by cryo-EM, revealing multiple conformations of a flexible assembly. Fitting high-resolution coordinates led to the definition of potential intermolecular interactions. We employed mutagenesis using a sub-genomic replicon system to probe the importance of these interactions for replication. We use these data to propose models for the role of higher-order 3Dpol complexes as a dynamic scaffold within which RNA replication can occur.


Assuntos
Vírus da Febre Aftosa/enzimologia , Genoma Viral , RNA Viral/genética , RNA Polimerase Dependente de RNA/química , Replicação Viral
3.
PLoS Pathog ; 16(8): e1008716, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32780760

RESUMO

Pandemic influenza A virus (IAV) remains a significant threat to global health. Preparedness relies primarily upon a single class of neuraminidase (NA) targeted antivirals, against which resistance is steadily growing. The M2 proton channel is an alternative clinically proven antiviral target, yet a near-ubiquitous S31N polymorphism in M2 evokes resistance to licensed adamantane drugs. Hence, inhibitors capable of targeting N31 containing M2 (M2-N31) are highly desirable. Rational in silico design and in vitro screens delineated compounds favouring either lumenal or peripheral M2 binding, yielding effective M2-N31 inhibitors in both cases. Hits included adamantanes as well as novel compounds, with some showing low micromolar potency versus pandemic "swine" H1N1 influenza (Eng195) in culture. Interestingly, a published adamantane-based M2-N31 inhibitor rapidly selected a resistant V27A polymorphism (M2-A27/N31), whereas this was not the case for non-adamantane compounds. Nevertheless, combinations of adamantanes and novel compounds achieved synergistic antiviral effects, and the latter synergised with the neuraminidase inhibitor (NAi), Zanamivir. Thus, site-directed drug combinations show potential to rejuvenate M2 as an antiviral target whilst reducing the risk of drug resistance.


Assuntos
Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Influenza Humana/virologia , Rimantadina/farmacologia , Proteínas da Matriz Viral/antagonistas & inibidores , Zanamivir/farmacologia , Antivirais/farmacologia , Farmacorresistência Viral , Sinergismo Farmacológico , Quimioterapia Combinada , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/metabolismo , Influenza Humana/tratamento farmacológico , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/metabolismo
4.
Antiviral Res ; 178: 104778, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32229236

RESUMO

BK polyomavirus (BKPyV) is a ubiquitous pathogen in the human population that is asymptomatic in healthy individuals, but can be life-threatening in those undergoing kidney transplant. To-date, no vaccines or anti-viral therapies are available to treat human BKPyV infections. New therapeutic strategies are urgently required. In this study, using a rational pharmacological screening regimen of known ion channel modulating compounds, we show that BKPyV requires cystic fibrosis transmembrane conductance regulator (CFTR) activity to infect primary renal proximal tubular epithelial cells. Disrupting CFTR function through treatment with the clinically available drug glibenclamide, the CFTR inhibitor CFTR172, or CFTR-silencing, all reduced BKPyV infection. Specifically, time of addition assays and the assessment of the exposure of VP2/VP3 minor capsid proteins indicated a role for CFTR during BKPyV transport to the endoplasmic reticulum, an essential step during the early stages of BKPyV infection. We thus establish CFTR as an important host-factor in the BKPyV life cycle and reveal CFTR modulators as potential anti-BKPyV therapies.


Assuntos
Antivirais/farmacologia , Vírus BK/efeitos dos fármacos , Regulador de Condutância Transmembrana em Fibrose Cística/antagonistas & inibidores , Glibureto/farmacologia , Vírus BK/fisiologia , Proteínas do Capsídeo/metabolismo , Células Cultivadas , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Humanos , Canais KATP/antagonistas & inibidores , Canais KATP/metabolismo , Túbulos Renais Proximais , Bloqueadores dos Canais de Potássio/farmacologia , Urotélio/citologia , Urotélio/virologia , Replicação Viral
5.
J Gen Virol ; 97(9): 2221-2230, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27323707

RESUMO

Foot-and-mouth disease virus (FMDV) causes economically damaging infections of cloven-hooved animals, with outbreaks resulting in large financial losses to the agricultural industry. Due to the highly contagious nature of FMDV, research with infectious virus is restricted to a limited number of key facilities worldwide. FMDV sub-genomic replicons are therefore important tools for the study of viral translation and genome replication. The type III phosphatidylinositol-4-kinases (PI4Ks) are a family of enzymes that plays a key role in the production of replication complexes (viral factories) of a number of positive-sense RNA viruses and represents a potential target for novel pan-viral therapeutics. Here, we investigated whether type III PI4Ks also play a role in the FMDV life cycle, using a combination of FMDV sub-genomic replicons and bicistronic internal ribosome entry site (IRES)-containing reporter plasmids. We demonstrated that replication of the FMDV replicon was unaffected by inhibitors of either PI4KIIIα or PI4KIIIß. However, PIK93, an inhibitor previously demonstrated to target PI4KIIIß, did inhibit IRES-mediated protein translation. Consistent with this, cells transfected with FMDV replicons did not exhibit elevated levels of phosphatidylinositol-4-phosphate lipids. These results are therefore supportive of the hypothesis that FMDV genome replication does not require type III PI4K activity and does not activate these kinases.


Assuntos
1-Fosfatidilinositol 4-Quinase/metabolismo , Vírus da Febre Aftosa/fisiologia , Interações Hospedeiro-Patógeno , Replicação Viral , 1-Fosfatidilinositol 4-Quinase/antagonistas & inibidores , Animais , Linhagem Celular , Cricetinae , Inibidores Enzimáticos/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/virologia
6.
J Virol ; 90(15): 6864-6883, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27194768

RESUMO

UNLABELLED: The Picornaviridae is a large family of positive-sense RNA viruses that contains numerous human and animal pathogens, including foot-and-mouth disease virus (FMDV). The picornavirus replication complex comprises a coordinated network of protein-protein and protein-RNA interactions involving multiple viral and host-cellular factors. Many of the proteins within the complex possess multiple roles in viral RNA replication, some of which can be provided in trans (i.e., via expression from a separate RNA molecule), while others are required in cis (i.e., expressed from the template RNA molecule). In vitro studies have suggested that multiple copies of the RNA-dependent RNA polymerase (RdRp) 3D are involved in the viral replication complex. However, it is not clear whether all these molecules are catalytically active or what other function(s) they provide. In this study, we aimed to distinguish between catalytically active 3D molecules and those that build a replication complex. We report a novel nonenzymatic cis-acting function of 3D that is essential for viral-genome replication. Using an FMDV replicon in complementation experiments, our data demonstrate that this cis-acting role of 3D is distinct from the catalytic activity, which is predominantly trans acting. Immunofluorescence studies suggest that both cis- and trans-acting 3D molecules localize to the same cellular compartment. However, our genetic and structural data suggest that 3D interacts in cis with RNA stem-loops that are essential for viral RNA replication. This study identifies a previously undescribed aspect of picornavirus replication complex structure-function and an important methodology for probing such interactions further. IMPORTANCE: Foot-and-mouth disease virus (FMDV) is an important animal pathogen responsible for foot-and-mouth disease. The disease is endemic in many parts of the world with outbreaks within livestock resulting in major economic losses. Propagation of the viral genome occurs within replication complexes, and understanding this process can facilitate the development of novel therapeutic strategies. Many of the nonstructural proteins involved in replication possess multiple functions in the viral life cycle, some of which can be supplied to the replication complex from a separate genome (i.e., in trans) while others must originate from the template (i.e., in cis). Here, we present an analysis of cis and trans activities of the RNA-dependent RNA polymerase 3D. We demonstrate a novel cis-acting role of 3D in replication. Our data suggest that this role is distinct from its enzymatic functions and requires interaction with the viral genome. Our data further the understanding of genome replication of this important pathogen.


Assuntos
Antígenos Virais/metabolismo , Vírus da Febre Aftosa/enzimologia , Vírus da Febre Aftosa/genética , Febre Aftosa/virologia , RNA Viral/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/genética , Animais , Antígenos Virais/química , Células Cultivadas , Genoma Viral , Humanos , Modelos Moleculares , Conformação Proteica , Transcrição Gênica , Proteínas não Estruturais Virais/química
7.
J Biol Chem ; 291(7): 3411-22, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26677217

RESUMO

Bunyaviruses are considered to be emerging pathogens facilitated by the segmented nature of their genome that allows reassortment between different species to generate novel viruses with altered pathogenicity. Bunyaviruses are transmitted via a diverse range of arthropod vectors, as well as rodents, and have established a global disease range with massive importance in healthcare, animal welfare, and economics. There are no vaccines or anti-viral therapies available to treat human bunyavirus infections and so development of new anti-viral strategies is urgently required. Bunyamwera virus (BUNV; genus Orthobunyavirus) is the model bunyavirus, sharing aspects of its molecular and cellular biology with all Bunyaviridae family members. Here, we show for the first time that BUNV activates and requires cellular potassium (K(+)) channels to infect cells. Time of addition assays using K(+) channel modulating agents demonstrated that K(+) channel function is critical to events shortly after virus entry but prior to viral RNA synthesis/replication. A similar K(+) channel dependence was identified for other bunyaviruses namely Schmallenberg virus (Orthobunyavirus) as well as the more distantly related Hazara virus (Nairovirus). Using a rational pharmacological screening regimen, two-pore domain K(+) channels (K2P) were identified as the K(+) channel family mediating BUNV K(+) channel dependence. As several K2P channel modulators are currently in clinical use, our work suggests they may represent a new and safe drug class for the treatment of potentially lethal bunyavirus disease.


Assuntos
Antivirais/farmacologia , Vírus Bunyamwera/efeitos dos fármacos , Infecções por Bunyaviridae/tratamento farmacológico , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio de Domínios Poros em Tandem/antagonistas & inibidores , Integração Viral/efeitos dos fármacos , Aedes , Animais , Vírus Bunyamwera/crescimento & desenvolvimento , Vírus Bunyamwera/fisiologia , Infecções por Bunyaviridae/metabolismo , Infecções por Bunyaviridae/virologia , Linhagem Celular , Chlorocebus aethiops , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Humanos , Mesocricetus , Nairovirus/efeitos dos fármacos , Nairovirus/crescimento & desenvolvimento , Nairovirus/fisiologia , Orthobunyavirus/efeitos dos fármacos , Orthobunyavirus/crescimento & desenvolvimento , Orthobunyavirus/fisiologia , Canais de Potássio de Domínios Poros em Tandem/genética , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Células Vero
8.
J Gen Virol ; 96(12): 3507-3518, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26432090

RESUMO

Probing the molecular interactions within the foot-and-mouth disease virus (FMDV) RNA replication complex has been restricted in part by the lack of suitable reagents. Random insertional mutagenesis has proven an excellent method to reveal domains of proteins essential for virus replication as well as locations that can tolerate small genetic insertions. Such insertion sites can subsequently be adapted by the incorporation of commonly used epitope tags, facilitating their detection with commercially available reagents. In this study, we used random transposon-mediated mutagenesis to produce a library of 15 nt insertions in the FMDV nonstructural polyprotein. Using a replicon-based assay, we isolated multiple replication-competent as well as replication-defective insertions. We adapted the replication-competent insertion sites for the successful incorporation of epitope tags within FMDV non-structural proteins for use in a variety of downstream assays. Additionally, we showed that replication of some of the replication-defective insertion mutants could be rescued by co-transfection of a 'helper' replicon, demonstrating a novel use of random mutagenesis to identify intergenomic trans-complementation. Both the epitope tags and replication-defective insertions identified here will be valuable tools for probing interactions within picornavirus replication complexes.


Assuntos
Elementos de DNA Transponíveis/genética , Vírus da Febre Aftosa/fisiologia , Proteínas não Estruturais Virais/genética , Replicação Viral/fisiologia , Clonagem Molecular , Vírus da Febre Aftosa/genética , Regulação Viral da Expressão Gênica/fisiologia , Mutagênese , Mutagênese Insercional , RNA Viral/genética , Replicon/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA