Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4568, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811558

RESUMO

Orbital current, defined as the orbital character of Bloch states in solids, can travel with larger coherence length through a broader range of materials than its spin counterpart, facilitating a robust, higher density and energy efficient information transmission. Hence, active control of orbital transport plays a pivotal role in the progress of the evolving field of quantum information technology. Unlike spin angular momentum, orbital angular momentum couples to phonon angular momentum efficiently via orbital-crystal momentum (L-k) coupling, allowing us to control orbital transport through crystal field potential mediated angular momentum transfer. Here, leveraging the orbital dependant efficient L-k coupling, we have experimentally demonstrated the active control of orbital current velocity in Ni/Pt heterostructure. We observe terahertz emission from Ni/Pt heterostructure via long-range ballistic orbital transport, as evidenced by the delay, and chirping in the emitted THz pulse correlating with increased Pt thickness. Additionally, we also have identified a critical energy density required to overcome collisions in orbital transport, enabling a swifter flow of orbital current. Femtosecond light driven active control of the ballistic orbital transport lays the foundation for the development of dynamic optorbitronics for transmitting information over extended distance.

2.
Nature ; 627(8004): 522-527, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38509277

RESUMO

Topological whirls or 'textures' of spins such as magnetic skyrmions represent the smallest realizable emergent magnetic entities1-5. They hold considerable promise as robust, nanometre-scale, mobile bits for sustainable computing6-8. A longstanding roadblock to unleashing their potential is the absence of a device enabling deterministic electrical readout of individual spin textures9,10. Here we present the wafer-scale realization of a nanoscale chiral magnetic tunnel junction (MTJ) hosting a single, ambient skyrmion. Using a suite of electrical and multimodal imaging techniques, we show that the MTJ nucleates skyrmions of fixed polarity, whose large readout signal-20-70% relative to uniformly magnetized states-corresponds directly to skyrmion size. The MTJ exploits complementary nucleation mechanisms to stabilize distinctly sized skyrmions at zero field, thereby realizing three non-volatile electrical states. Crucially, it can electrically write and delete skyrmions to both uniform states with switching energies 1,000 times lower than the state of the art. Here, the applied voltage emulates a magnetic field and, in contrast to conventional MTJs, it reshapes both the energetics and kinetics of the switching transition, enabling deterministic bidirectional switching. Our stack platform enables large readout and efficient switching, and is compatible with lateral manipulation of skyrmionic bits, providing the much-anticipated backbone for all-electrical skyrmionic device architectures9,10. Its wafer-scale realizability provides a springboard to harness chiral spin textures for multibit memory and unconventional computing8,11.

3.
Nanoscale Horiz ; 9(1): 132-142, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37850320

RESUMO

Atomically-thin monolayer WS2 is a promising channel material for next-generation Moore's nanoelectronics owing to its high theoretical room temperature electron mobility and immunity to short channel effect. The high photoluminescence (PL) quantum yield of the monolayer WS2 also makes it highly promising for future high-performance optoelectronics. However, the difficulty in strictly growing monolayer WS2, due to its non-self-limiting growth mechanism, may hinder its industrial development because of the uncontrollable growth kinetics in attaining the high uniformity in thickness and property on the wafer-scale. In this study, we report a scalable process to achieve a 4 inch wafer-scale fully-covered strictly monolayer WS2 by applying the in situ self-limited thinning of multilayer WS2 formed by sulfurization of WOx films. Through a pulsed supply of sulfur precursor vapor under a continuous H2 flow, the self-limited thinning process can effectively trim down the overgrown multilayer WS2 to the monolayer limit without damaging the remaining bottom WS2 monolayer. Density functional theory (DFT) calculations reveal that the self-limited thinning arises from the thermodynamic instability of the WS2 top layers as opposed to a stable bottom monolayer WS2 on sapphire above a vacuum sublimation temperature of WS2. The self-limited thinning approach overcomes the intrinsic limitation of conventional vapor-based growth methods in preventing the 2nd layer WS2 domain nucleation/growth. It also offers additional advantages, such as scalability, simplicity, and possibility for batch processing, thus opening up a new avenue to develop a manufacturing-viable growth technology for the preparation of a strictly-monolayer WS2 on the wafer-scale.

4.
Nature ; 616(7956): 270-274, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37045919

RESUMO

The most recognizable feature of graphene's electronic spectrum is its Dirac point, around which interesting phenomena tend to cluster. At low temperatures, the intrinsic behaviour in this regime is often obscured by charge inhomogeneity1,2 but thermal excitations can overcome the disorder at elevated temperatures and create an electron-hole plasma of Dirac fermions. The Dirac plasma has been found to exhibit unusual properties, including quantum-critical scattering3-5 and hydrodynamic flow6-8. However, little is known about the plasma's behaviour in magnetic fields. Here we report magnetotransport in this quantum-critical regime. In low fields, the plasma exhibits giant parabolic magnetoresistivity reaching more than 100 per cent in a magnetic field of 0.1 tesla at room temperature. This is orders-of-magnitude higher than magnetoresistivity found in any other system at such temperatures. We show that this behaviour is unique to monolayer graphene, being underpinned by its massless spectrum and ultrahigh mobility, despite frequent (Planckian limit) scattering3-5,9-14. With the onset of Landau quantization in a magnetic field of a few tesla, where the electron-hole plasma resides entirely on the zeroth Landau level, giant linear magnetoresistivity emerges. It is nearly independent of temperature and can be suppressed by proximity screening15, indicating a many-body origin. Clear parallels with magnetotransport in strange metals12-14 and so-called quantum linear magnetoresistance predicted for Weyl metals16 offer an interesting opportunity to further explore relevant physics using this well defined quantum-critical two-dimensional system.

5.
Nat Commun ; 12(1): 4252, 2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34253721

RESUMO

Magnetic skyrmions are nanoscale spin textures touted as next-generation computing elements. When subjected to lateral currents, skyrmions move at considerable speeds. Their topological charge results in an additional transverse deflection known as the skyrmion Hall effect (SkHE). While promising, their dynamic phenomenology with current, skyrmion size, geometric effects and disorder remain to be established. Here we report on the ensemble dynamics of individual skyrmions forming dense arrays in Pt/Co/MgO wires by examining over 20,000 instances of motion across currents and fields. The skyrmion speed reaches 24 m/s in the plastic flow regime and is surprisingly robust to positional and size variations. Meanwhile, the SkHE saturates at ∼22∘, is substantially reshaped by the wire edge, and crucially increases weakly with skyrmion size. Particle model simulations suggest that the SkHE size dependence - contrary to analytical predictions - arises from the interplay of intrinsic and pinning-driven effects. These results establish a robust framework to harness SkHE and achieve high-throughput skyrmion motion in wire devices.

6.
Nano Lett ; 20(1): 109-115, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31692358

RESUMO

We present high-frequency dynamics of magnetic nanostructure lattices, fabricated in the form of "artificial spin-ice", that possess magnetically frustrated states. Dynamics of such structures feature multiple resonance excitation that reveals rich and intriguing microwave characteristics, which are highly dependent on field-cycle history. Geometrical parameters such as dimensions and ferromagnetic layer thickness, which control the interplay of different demagnetizing factors, are found to play a pivotal role in governing the dynamics. Our findings are highlighted by the evolution of unique excitations pertaining to magnetic frustration, which are well supported by static magnetometry studies and micromagnetic simulations.

7.
Sci Rep ; 6: 25538, 2016 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-27157532

RESUMO

Ultrafast optical studies have been performed on epitaxial films of the novel B-phase of vanadium dioxide using temperature-dependent optical pump-probe technique. Signature of temperature-driven metal-to-insulator transition was distinctly observed in the ultrafast dynamics - the insulating phase showed two characteristic electronic relaxation times while the metallic phase showed only one. Beyond a threshold value of the pump fluence, the insulating state collapses into a 'metallic-like' phase which can be further subdivided into two regimes according to the lengths of the fast characteristic time. The first regime can be explained by lattice heating due to the optical pump; the other cannot be accounted by simple lattice heating effects alone, and thus offers evidence for a true photoinduced phase transition.

8.
Small ; 12(6): 802-9, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26707567

RESUMO

Integrating nanomaterials with different dimensionalities and properties is a versatile approach toward realizing new functionalities in advanced devices. Here, a novel diode-type heterostructure is reported consisting of 1D semiconducting ZnO nanorods and 2D metallic LaAlO3-SrTiO3 interface. Tunable insulator-to-metal transitions, absent in the individual components, are observed as a result of the competing temperature-dependent conduction mechanisms. Detailed transport analysis reveals direct tunneling at low bias, Fowler-Nordheim tunneling at high forward bias, and Zener breakdown at high reverse bias. Our results highlight the rich electronic properties of such artificial diodes with hybrid dimensionalities, and the design principle may be generalized to other nanomaterials.

9.
Sci Rep ; 5: 9182, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25777320

RESUMO

A remarkable feature of vanadium dioxide is that it can be synthesized in a number of polymorphs. The conductivity mechanism in the metastable layered polymorph VO2(B) thin films has been investigated by terahertz time-domain spectroscopy (THz-TDS). In VO2(B), a critical temperature of 240 K marks the appearance of a non-zero Drude term in the observed complex conductivity, indicating the evolution from a pure insulating state towards a metallic state. In contrast, the THz conductivity of the well-known VO2(M1) is well fitted only by a modification of the Drude model to include backscattering. We also identified two different THz conductivity regimes separated by temperature in these two polymorphs. The electronic phase diagram is constructed, revealing that the width and onset of the metal-insulator transition in the B phase develop differently from the M1 phase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA