Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
JAMA Neurol ; 81(2): 134-142, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38147328

RESUMO

Importance: There is limited information on modifiable risk factors for young-onset dementia (YOD). Objective: To examine factors that are associated with the incidence of YOD. Design, Setting, and Participants: This prospective cohort study used data from the UK Biobank, with baseline assessment between 2006 and 2010 and follow-up until March 31, 2021, for England and Scotland, and February 28, 2018, for Wales. Participants younger than 65 years and without a dementia diagnosis at baseline assessment were included in this study. Participants who were 65 years and older and those with dementia at baseline were excluded. Data were analyzed from May 2022 to April 2023. Exposures: A total of 39 potential risk factors were identified from systematic reviews of late-onset dementia and YOD risk factors and grouped into domains of sociodemographic factors (education, socioeconomic status, and sex), genetic factors (apolipoprotein E), lifestyle factors (physical activity, alcohol use, alcohol use disorder, smoking, diet, cognitive activity, social isolation, and marriage), environmental factors (nitrogen oxide, particulate matter, pesticide, and diesel), blood marker factors (vitamin D, C-reactive protein, estimated glomerular filtration rate function, and albumin), cardiometabolic factors (stroke, hypertension, diabetes, hypoglycemia, heart disease, atrial fibrillation, and aspirin use), psychiatric factors (depression, anxiety, benzodiazepine use, delirium, and sleep problems), and other factors (traumatic brain injury, rheumatoid arthritis, thyroid dysfunction, hearing impairment, and handgrip strength). Main Outcome and Measures: Multivariable Cox proportional hazards regression was used to study the association between the risk factors and incidence of YOD. Factors were tested stepwise first within domains and then across domains. Results: Of 356 052 included participants, 197 036 (55.3%) were women, and the mean (SD) age at baseline was 54.6 (7.0) years. During 2 891 409 person-years of follow-up, 485 incident YOD cases (251 of 485 men [51.8%]) were observed, yielding an incidence rate of 16.8 per 100 000 person-years (95% CI, 15.4-18.3). In the final model, 15 factors were significantly associated with a higher YOD risk, namely lower formal education, lower socioeconomic status, carrying 2 apolipoprotein ε4 allele, no alcohol use, alcohol use disorder, social isolation, vitamin D deficiency, high C-reactive protein levels, lower handgrip strength, hearing impairment, orthostatic hypotension, stroke, diabetes, heart disease, and depression. Conclusions and Relevance: In this study, several factors, mostly modifiable, were associated with a higher risk of YOD. These modifiable risk factors should be incorporated in future dementia prevention initiatives and raise new therapeutic possibilities for YOD.


Assuntos
Alcoolismo , Demência , Diabetes Mellitus , Perda Auditiva , Cardiopatias , Acidente Vascular Cerebral , Masculino , Humanos , Feminino , Pessoa de Meia-Idade , Estudos Prospectivos , Alcoolismo/complicações , Biobanco do Reino Unido , Bancos de Espécimes Biológicos , Proteína C-Reativa , Força da Mão , Demência/diagnóstico , Fatores de Risco , Acidente Vascular Cerebral/epidemiologia , Cardiopatias/complicações , Apolipoproteínas , Perda Auditiva/complicações
2.
Alzheimers Dement ; 19(12): 5952-5969, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37837420

RESUMO

INTRODUCTION: A wide range of modifiable risk factors for dementia have been identified. Considerable debate remains about these risk factors, possible interactions between them or with genetic risk, and causality, and how they can help in clinical trial recruitment and drug development. Artificial intelligence (AI) and machine learning (ML) may refine understanding. METHODS: ML approaches are being developed in dementia prevention. We discuss exemplar uses and evaluate the current applications and limitations in the dementia prevention field. RESULTS: Risk-profiling tools may help identify high-risk populations for clinical trials; however, their performance needs improvement. New risk-profiling and trial-recruitment tools underpinned by ML models may be effective in reducing costs and improving future trials. ML can inform drug-repurposing efforts and prioritization of disease-modifying therapeutics. DISCUSSION: ML is not yet widely used but has considerable potential to enhance precision in dementia prevention. HIGHLIGHTS: Artificial intelligence (AI) is not widely used in the dementia prevention field. Risk-profiling tools are not used in clinical practice. Causal insights are needed to understand risk factors over the lifespan. AI will help personalize risk-management tools for dementia prevention. AI could target specific patient groups that will benefit most for clinical trials.


Assuntos
Inteligência Artificial , Demência , Humanos , Aprendizado de Máquina , Fatores de Risco , Desenvolvimento de Medicamentos , Demência/prevenção & controle
3.
Alzheimers Dement ; 19(12): 5860-5871, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37654029

RESUMO

With the increase in large multimodal cohorts and high-throughput technologies, the potential for discovering novel biomarkers is no longer limited by data set size. Artificial intelligence (AI) and machine learning approaches have been developed to detect novel biomarkers and interactions in complex data sets. We discuss exemplar uses and evaluate current applications and limitations of AI to discover novel biomarkers. Remaining challenges include a lack of diversity in the data sets available, the sheer complexity of investigating interactions, the invasiveness and cost of some biomarkers, and poor reporting in some studies. Overcoming these challenges will involve collecting data from underrepresented populations, developing more powerful AI approaches, validating the use of noninvasive biomarkers, and adhering to reporting guidelines. By harnessing rich multimodal data through AI approaches and international collaborative innovation, we are well positioned to identify clinically useful biomarkers that are accurate, generalizable, unbiased, and acceptable in clinical practice. HIGHLIGHTS: Artificial intelligence and machine learning approaches may accelerate dementia biomarker discovery. Remaining challenges include data set suitability due to size and bias in cohort selection. Multimodal data, diverse data sets, improved machine learning approaches, real-world validation, and interdisciplinary collaboration are required.


Assuntos
Doença de Alzheimer , Pesquisa Biomédica , Humanos , Inteligência Artificial , Doença de Alzheimer/diagnóstico , Aprendizado de Máquina
4.
Alzheimers Dement ; 19(12): 5970-5987, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37768001

RESUMO

INTRODUCTION: Experimental models are essential tools in neurodegenerative disease research. However, the translation of insights and drugs discovered in model systems has proven immensely challenging, marred by high failure rates in human clinical trials. METHODS: Here we review the application of artificial intelligence (AI) and machine learning (ML) in experimental medicine for dementia research. RESULTS: Considering the specific challenges of reproducibility and translation between other species or model systems and human biology in preclinical dementia research, we highlight best practices and resources that can be leveraged to quantify and evaluate translatability. We then evaluate how AI and ML approaches could be applied to enhance both cross-model reproducibility and translation to human biology, while sustaining biological interpretability. DISCUSSION: AI and ML approaches in experimental medicine remain in their infancy. However, they have great potential to strengthen preclinical research and translation if based upon adequate, robust, and reproducible experimental data. HIGHLIGHTS: There are increasing applications of AI in experimental medicine. We identified issues in reproducibility, cross-species translation, and data curation in the field. Our review highlights data resources and AI approaches as solutions. Multi-omics analysis with AI offers exciting future possibilities in drug discovery.


Assuntos
Demência , Doenças Neurodegenerativas , Humanos , Inteligência Artificial , Reprodutibilidade dos Testes , Aprendizado de Máquina
5.
Alzheimers Dement ; 19(12): 5934-5951, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37639369

RESUMO

Artificial intelligence (AI) and machine learning (ML) approaches are increasingly being used in dementia research. However, several methodological challenges exist that may limit the insights we can obtain from high-dimensional data and our ability to translate these findings into improved patient outcomes. To improve reproducibility and replicability, researchers should make their well-documented code and modeling pipelines openly available. Data should also be shared where appropriate. To enhance the acceptability of models and AI-enabled systems to users, researchers should prioritize interpretable methods that provide insights into how decisions are generated. Models should be developed using multiple, diverse datasets to improve robustness, generalizability, and reduce potentially harmful bias. To improve clarity and reproducibility, researchers should adhere to reporting guidelines that are co-produced with multiple stakeholders. If these methodological challenges are overcome, AI and ML hold enormous promise for changing the landscape of dementia research and care. HIGHLIGHTS: Machine learning (ML) can improve diagnosis, prevention, and management of dementia. Inadequate reporting of ML procedures affects reproduction/replication of results. ML models built on unrepresentative datasets do not generalize to new datasets. Obligatory metrics for certain model structures and use cases have not been defined. Interpretability and trust in ML predictions are barriers to clinical translation.


Assuntos
Inteligência Artificial , Demência , Humanos , Reprodutibilidade dos Testes , Aprendizado de Máquina , Projetos de Pesquisa , Demência/diagnóstico
6.
Alzheimers Dement ; 19(12): 5922-5933, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37587767

RESUMO

Drug discovery and clinical trial design for dementia have historically been challenging. In part these challenges have arisen from patient heterogeneity, length of disease course, and the tractability of a target for the brain. Applying big data analytics and machine learning tools for drug discovery and utilizing them to inform successful clinical trial design has the potential to accelerate progress. Opportunities arise at multiple stages in the therapy pipeline and the growing availability of large medical data sets opens possibilities for big data analyses to answer key questions in clinical and therapeutic challenges. However, before this goal is reached, several challenges need to be overcome and only a multi-disciplinary approach can promote data-driven decision-making to its full potential. Herein we review the current state of machine learning applications to clinical trial design and drug discovery, while presenting opportunities and recommendations that can break down the barriers to implementation.


Assuntos
Inteligência Artificial , Demência , Humanos , Descoberta de Drogas , Aprendizado de Máquina , Progressão da Doença , Demência/tratamento farmacológico
7.
Alzheimers Dement ; 19(12): 5905-5921, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37606627

RESUMO

Genetics and omics studies of Alzheimer's disease and other dementia subtypes enhance our understanding of underlying mechanisms and pathways that can be targeted. We identified key remaining challenges: First, can we enhance genetic studies to address missing heritability? Can we identify reproducible omics signatures that differentiate between dementia subtypes? Can high-dimensional omics data identify improved biomarkers? How can genetics inform our understanding of causal status of dementia risk factors? And which biological processes are altered by dementia-related genetic variation? Artificial intelligence (AI) and machine learning approaches give us powerful new tools in helping us to tackle these challenges, and we review possible solutions and examples of best practice. However, their limitations also need to be considered, as well as the need for coordinated multidisciplinary research and diverse deeply phenotyped cohorts. Ultimately AI approaches improve our ability to interrogate genetics and omics data for precision dementia medicine. HIGHLIGHTS: We have identified five key challenges in dementia genetics and omics studies. AI can enable detection of undiscovered patterns in dementia genetics and omics data. Enhanced and more diverse genetics and omics datasets are still needed. Multidisciplinary collaborative efforts using AI can boost dementia research.


Assuntos
Doença de Alzheimer , Inteligência Artificial , Humanos , Aprendizado de Máquina , Doença de Alzheimer/genética , Fenótipo , Medicina de Precisão
8.
Alzheimers Dement ; 19(12): 5885-5904, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37563912

RESUMO

INTRODUCTION: Artificial intelligence (AI) and neuroimaging offer new opportunities for diagnosis and prognosis of dementia. METHODS: We systematically reviewed studies reporting AI for neuroimaging in diagnosis and/or prognosis of cognitive neurodegenerative diseases. RESULTS: A total of 255 studies were identified. Most studies relied on the Alzheimer's Disease Neuroimaging Initiative dataset. Algorithmic classifiers were the most commonly used AI method (48%) and discriminative models performed best for differentiating Alzheimer's disease from controls. The accuracy of algorithms varied with the patient cohort, imaging modalities, and stratifiers used. Few studies performed validation in an independent cohort. DISCUSSION: The literature has several methodological limitations including lack of sufficient algorithm development descriptions and standard definitions. We make recommendations to improve model validation including addressing key clinical questions, providing sufficient description of AI methods and validating findings in independent datasets. Collaborative approaches between experts in AI and medicine will help achieve the promising potential of AI tools in practice. HIGHLIGHTS: There has been a rapid expansion in the use of machine learning for diagnosis and prognosis in neurodegenerative disease Most studies (71%) relied on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset with no other individual dataset used more than five times There has been a recent rise in the use of more complex discriminative models (e.g., neural networks) that performed better than other classifiers for classification of AD vs healthy controls We make recommendations to address methodological considerations, addressing key clinical questions, and validation We also make recommendations for the field more broadly to standardize outcome measures, address gaps in the literature, and monitor sources of bias.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Humanos , Doença de Alzheimer/diagnóstico por imagem , Prognóstico , Inteligência Artificial , Encéfalo/diagnóstico por imagem , Neuroimagem/métodos
9.
Alzheimers Dement ; 19(12): 5872-5884, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37496259

RESUMO

INTRODUCTION: The use of applied modeling in dementia risk prediction, diagnosis, and prognostics will have substantial public health benefits, particularly as "deep phenotyping" cohorts with multi-omics health data become available. METHODS: This narrative review synthesizes understanding of applied models and digital health technologies, in terms of dementia risk prediction, diagnostic discrimination, prognosis, and progression. Machine learning approaches show evidence of improved predictive power compared to standard clinical risk scores in predicting dementia, and the potential to decompose large numbers of variables into relatively few critical predictors. RESULTS: This review focuses on key areas of emerging promise including: emphasis on easier, more transparent data sharing and cohort access; integration of high-throughput biomarker and electronic health record data into modeling; and progressing beyond the primary prediction of dementia to secondary outcomes, for example, treatment response and physical health. DISCUSSION: Such approaches will benefit also from improvements in remote data measurement, whether cognitive (e.g., online), or naturalistic (e.g., watch-based accelerometry).


Assuntos
Inteligência Artificial , Demência , Humanos , Saúde Digital , Aprendizado de Máquina , Demência/diagnóstico , Demência/epidemiologia
10.
Campbell Syst Rev ; 19(2): e1326, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37180568

RESUMO

This is the protocol for a Campbell systematic review. The objectives are as follows: identify available systematic reviews and randomised controlled trials on interventions targeting health or social needs of the people aged over 80; identify qualitative studies relating to the experiences of people aged over 80 of interventions that target their health or social needs; identify areas where systematic reviews are needed; identify gaps in evidence where further primary research is needed; assess equity considerations (using the PROGRESS plus criteria) in available systematic reviews, randomised trials and qualitative studies of identified interventions; assess gaps and evidence related to health equity.

11.
ArXiv ; 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36911275

RESUMO

INTRODUCTION: Machine learning (ML) has been extremely successful in identifying key features from high-dimensional datasets and executing complicated tasks with human expert levels of accuracy or greater. METHODS: We summarize and critically evaluate current applications of ML in dementia research and highlight directions for future research. RESULTS: We present an overview of ML algorithms most frequently used in dementia research and highlight future opportunities for the use of ML in clinical practice, experimental medicine, and clinical trials. We discuss issues of reproducibility, replicability and interpretability and how these impact the clinical applicability of dementia research. Finally, we give examples of how state-of-the-art methods, such as transfer learning, multi-task learning, and reinforcement learning, may be applied to overcome these issues and aid the translation of research to clinical practice in the future. DISCUSSION: ML-based models hold great promise to advance our understanding of the underlying causes and pathological mechanisms of dementia.

12.
Brain Inform ; 10(1): 6, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36829050

RESUMO

Progress in dementia research has been limited, with substantial gaps in our knowledge of targets for prevention, mechanisms for disease progression, and disease-modifying treatments. The growing availability of multimodal data sets opens possibilities for the application of machine learning and artificial intelligence (AI) to help answer key questions in the field. We provide an overview of the state of the science, highlighting current challenges and opportunities for utilisation of AI approaches to move the field forward in the areas of genetics, experimental medicine, drug discovery and trials optimisation, imaging, and prevention. Machine learning methods can enhance results of genetic studies, help determine biological effects and facilitate the identification of drug targets based on genetic and transcriptomic information. The use of unsupervised learning for understanding disease mechanisms for drug discovery is promising, while analysis of multimodal data sets to characterise and quantify disease severity and subtype are also beginning to contribute to optimisation of clinical trial recruitment. Data-driven experimental medicine is needed to analyse data across modalities and develop novel algorithms to translate insights from animal models to human disease biology. AI methods in neuroimaging outperform traditional approaches for diagnostic classification, and although challenges around validation and translation remain, there is optimism for their meaningful integration to clinical practice in the near future. AI-based models can also clarify our understanding of the causality and commonality of dementia risk factors, informing and improving risk prediction models along with the development of preventative interventions. The complexity and heterogeneity of dementia requires an alternative approach beyond traditional design and analytical approaches. Although not yet widely used in dementia research, machine learning and AI have the potential to unlock current challenges and advance precision dementia medicine.

13.
JAMA Ophthalmol ; 141(1): 84-91, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36394831

RESUMO

Importance: Several ocular biomarkers have been proposed for the early detection of Alzheimer disease (AD) and mild cognitive impairment (MCI), particularly fundus photography, optical coherence tomography (OCT), and OCT angiography (OCTA). Objective: To perform an umbrella review of systematic reviews to assess the diagnostic accuracy of ocular biomarkers for early diagnosis of Alzheimer disease. Data Sources: MEDLINE, Embase, and PsycINFO were searched from January 2000 to November 2021. The references of included reviews were also searched. Study Selection: Systematic reviews investigating the diagnostic accuracy of ocular biomarkers to detect AD and MCI, in secondary care or memory clinics, against established clinical criteria or clinical judgment. Data Extraction and Synthesis: The Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) reporting guideline checklist was followed and the Risk Of Bias in Systematic reviews tool was used to assess review quality. Main Outcomes and Measures: The prespecified outcome was the accuracy of ocular biomarkers for diagnosing AD and MCI. The area under the curve (AUC) was derived from standardized mean difference. Results: From the 591 titles, 14 systematic reviews were included (median [range] number of studies in each review, 14 [5-126]). Only 4 reviews were at low risk of bias on all Risk of Bias in Systematic Reviews domains. The imaging-derived parameters with the most evidence for detecting AD compared with healthy controls were OCT peripapillary retinal nerve fiber layer thickness (38 studies including 1883 patients with AD and 2510 controls; AUC = 0.70; 95% CI, 0.53-0.79); OCTA foveal avascular zone (5 studies including 177 patients with AD and 371 controls; AUC = 0.73; 95% CI, 0.50-0.89); and saccadic eye movements prosaccade latency (30 studies including 651 patients with AD/MCI and 771 controls; AUC = 0.64; 95% CI, 0.58-0.69). Antisaccade error was investigated in fewer studies (12 studies including 424 patients with AD/MCI and 382 controls) and yielded the best accuracy (AUC = 0.79; 95% CI, 0.70-0.88). Conclusions and Relevance: This umbrella review has highlighted limitations in design and reporting of the existing research on ocular biomarkers for diagnosing AD. Parameters with the best evidence showed poor to moderate diagnostic accuracy in cross-sectional studies. Future longitudinal studies should investigate whether changes in OCT and OCTA measurements over time can yield accurate predictions of AD onset.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/diagnóstico , Estudos Transversais , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/complicações , Retina , Biomarcadores
15.
Age Ageing ; 51(9)2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36057987

RESUMO

Approximately two-thirds of hospital admissions are older adults and almost half of these are likely to have some form of dementia. People with dementia are not only at an increased risk of adverse outcomes once admitted, but the unfamiliar environment and routinised practices of the wards and acute care can be particularly challenging for them, heightening their confusion, agitation and distress further impacting the ability to optimise their care. It is well established that a person-centred care approach helps alleviate some of the unfamiliar stress but how to embed this in the acute-care setting remains a challenge. In this article, we highlight the challenges that have been recognised in this area and put forward a set of evidence-based 'pointers for service change' to help organisations in the delivery of person-centred care. The DEMENTIA CARE pointers cover areas of: dementia awareness and understanding, education and training, modelling of person-centred care by clinical leaders, adapting the environment, teamwork (not being alone), taking the time to 'get to know', information sharing, access to necessary resources, communication, involving family (ask family), raising the profile of dementia care, and engaging volunteers. The pointers extend previous guidance, by recognising the importance of ward cultures that prioritise dementia care and institutional support that actively seeks to raise the profile of dementia care. The pointers provide a range of simple to more complex actions or areas for hospitals to help implement person-centred care approaches; however, embedding them within the organisational cultures of hospitals is the next challenge.


Assuntos
Demência , Idoso , Comunicação , Demência/diagnóstico , Demência/terapia , Hospitais , Humanos , Assistência Centrada no Paciente
16.
BMC Emerg Med ; 22(1): 70, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35676623

RESUMO

BACKGROUND: Pressure on emergency departments (EDs) from increased attendance for minor injuries has been recognised in the United Kingdom. Radiographer-led discharge (RLD) has potential for improving efficiency, through radiographers trained to discharge patients or refer them for treatment at the point of image assessment. This review aims to scope all RLD literature and identify research assessing the merits of RLD and requirements to enable implementation. METHODS: We conducted a scoping review of studies relating to RLD of emergency care patients requiring projection radiography of minor musculoskeletal (MSK) injuries. MEDLINE, Embase and CINAHL, relevant radiography journals and grey literature were searched. Articles were reviewed and the full texts of selected studies were screened against eligibility criteria. The data were extracted, collated and a narrative synthesis completed. RESULTS: Seven studies with varying study designs were included in the review. The small number of studies was possibly due to a generally low research uptake in radiography. The main outcome for four studies was reduced length of stay in ED, with recall and re-attendance to ED a primary outcome in one study and secondary outcome for two other studies. The potential for increased efficiency in the minor MSK pathway patient pathway and capacity for ED staff was recognised. Radiographers identified a concern regarding the risk of litigation and incentive of increased salary when considering RLD. The studies were broadly radiographer focussed, despite RLD spanning ED and Radiology. CONCLUSION: There were a low number of RLD active radiographers, likely to be motivated individuals. However, RLD has potential for generalisability with protocol variations evident, all producing similar positive outcomes. Understanding radiography and ED culture could clarify facilitators for RLD to be utilised more sustainably into the future. Cost effectiveness studies, action research within ED, and cluster randomised controlled trial with process evaluation are needed to fully understand the potential for RLD. The cost effectiveness of RLD may provide financial support for training radiographers and increasing their salary, with potential future benefit of reduction in workload within ED. RLD implementation would require an inter-professional approach achieved by understanding ED staff and patient perspectives and ensuring these views are central to RLD implementation.


Assuntos
Serviço Hospitalar de Emergência , Alta do Paciente , Tratamento de Emergência , Humanos , Radiografia , Reino Unido
17.
PLoS Med ; 19(3): e1003936, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35290368

RESUMO

BACKGROUND: Previous research has examined the improvements in healthy years if different health conditions are eliminated, but often with cross-sectional data, or for a limited number of conditions. We used longitudinal data to estimate disability-free life expectancy (DFLE) trends for older people with a broad number of health conditions, identify the conditions that would result in the greatest improvement in DFLE, and describe the contribution of the underlying transitions. METHODS AND FINDINGS: The Cognitive Function and Ageing Studies (CFAS I and II) are both large population-based studies of those aged 65 years or over in England with identical sampling strategies (CFAS I response 81.7%, N = 7,635; CFAS II response 54.7%, N = 7,762). CFAS I baseline interviews were conducted in 1991 to 1993 and CFAS II baseline interviews in 2008 to 2011, both with 2 years of follow-up. Disability was measured using the modified Townsend activities of daily living scale. Long-term conditions (LTCs-arthritis, cognitive impairment, coronary heart disease (CHD), diabetes, hearing difficulties, peripheral vascular disease (PVD), respiratory difficulties, stroke, and vision impairment) were self-reported. Multistate models estimated life expectancy (LE) and DFLE, stratified by sex and study and adjusted for age. DFLE was estimated from the transitions between disability-free and disability states at the baseline and 2-year follow-up interviews, and LE was estimated from mortality transitions up to 4.5 years after baseline. In CFAS I, 60.8% were women and average age was 75.6 years; in CFAS II, 56.1% were women and average age was 76.4 years. Cognitive impairment was the only LTC whose prevalence decreased over time (odds ratio: 0.6, 95% confidence interval (CI): 0.5 to 0.6, p < 0.001), and where the percentage of remaining years at age 65 years spent disability-free decreased for men (difference CFAS II-CFAS I: -3.6%, 95% CI: -8.2 to 1.0, p = 0.12) and women (difference CFAS II-CFAS I: -3.9%, 95% CI: -7.6 to 0.0, p = 0.04) with the LTC. For men and women with any other LTC, DFLE improved or remained similar. For women with CHD, years with disability decreased (-0.8 years, 95% CI: -3.1 to 1.6, p = 0.50) and DFLE increased (2.7 years, 95% CI: 0.7 to 4.7, p = 0.008), stemming from a reduction in the risk of incident disability (relative risk ratio: 0.6, 95% CI: 0.4 to 0.8, p = 0.004). The main limitations of the study were the self-report of health conditions and the response rate. However, inverse probability weights for baseline nonresponse and longitudinal attrition were used to ensure population representativeness. CONCLUSIONS: In this study, we observed improvements to DFLE between 1991 and 2011 despite the presence of most health conditions we considered. Attention needs to be paid to support and care for people with cognitive impairment who had different outcomes to those with physical health conditions.


Assuntos
Atividades Cotidianas , Pessoas com Deficiência , Idoso , Envelhecimento , Cognição , Estudos Transversais , Feminino , Expectativa de Vida Saudável , Humanos , Expectativa de Vida , Masculino
18.
PLOS Glob Public Health ; 2(8): e0000745, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36962577

RESUMO

Although leading causes of death are regularly reported, there is disagreement on which long-term conditions (LTCs) reduce disability-free life expectancy (DFLE) the most. We aimed to estimate increases in DFLE associated with elimination of a range of LTCs. This is a comprehensive systematic review and meta-analysis of studies assessing the effects of LTCs on health expectancy (HE). MEDLINE, Embase, HMIC, Science Citation Index, and Social Science Citation Index were systematically searched for studies published in English from July 2007 to July 2020 with updated searches from inception to April 8, 2021. LTCs considered included: arthritis, diabetes, cardiovascular disease including stroke and peripheral vascular disease, respiratory disease, visual and hearing impairment, dementia, cognitive impairment, depression, cancer, and comorbidity. Studies were included if they estimated HE outcomes (disability-free, active or healthy life expectancy) at age 50 or older for individuals with and without the LTC. Study selection and quality assessment were undertaken by teams of independent reviewers. Meta-analysis was feasible if three or more studies assessed the impact of the same LTC on the same HE at the same age using comparable methods, with narrative syntheses for the remaining studies. Studies reporting Years of Life Lost (YLL), Years of Life with Disability (YLD) and Disability Adjusted Life Years (DALYs = YLL+YLD) were included but reported separately as incomparable with other HE outcomes (PROSPERO registration: CRD42020196049). Searches returned 6072 unique records, yielding 404 eligible for full text retrieval from which 30 DFLE-related and 7 DALY-related were eligible for inclusion. Thirteen studies reported a single condition, and 17 studies reported on more than one condition (two to nine LTCs). Only seven studies examined the impact of comorbidities. Random effects meta-analyses were feasible for a subgroup of studies examining diabetes (four studies) or respiratory diseases (three studies) on DFLE. From pooled results, individuals at age 65 without diabetes gain on average 2.28 years disability-free compared to those with diabetes (95% CI: 0.57-3.99, p<0.01, I2 = 96.7%), whilst individuals without respiratory diseases gain on average 1.47 years compared to those with respiratory diseases (95% CI: 0.77-2.17, p<0.01, I2 = 79.8%). Eliminating diabetes, stroke, hypertension or arthritis would result in compression of disability. Of the seven longitudinal studies assessing the impact of multiple LTCs, three found that stroke had the greatest effect on DFLE for both genders. This study is the first to systematically quantify the impact of LTCs on both HE and LE at a global level, to assess potential compression of disability. Diabetes, stroke, hypertension and arthritis had a greater effect on DFLE than LE and so elimination would result in compression of disability. Guidelines for reporting HE outcomes would assist data synthesis in the future, which would in turn aid public health policy.

19.
EClinicalMedicine ; 39: 101041, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34386756

RESUMO

BACKGROUND: : Disability-free life expectancy (DFLE) inequalities by socioeconomic deprivation are widening, alongside rising prevalence of multiple long-term conditions (MLTCs). We use longitudinal data to assess whether MLTCs contribute to the widening DFLE inequalities by socioeconomic deprivation. METHODS: : The Cognitive Function and Ageing Studies (CFAS I and II) are large population-based studies of those ≥65 years, conducted in three areas in England. Baseline occurred in 1991 (CFAS I, n=7635) and 2011 (CFAS II, n=7762) with two-year follow-up. We defined disability as difficulty in activities of daily living, MLTCs as the presence of at least two of nine health conditions, and socioeconomic deprivation by area-level deprivation tertiles. DFLE and transitions between disability states and death were estimated from multistate models. FINDINGS: : For people with MLTCs, inequalities in DFLE at age 65 between the most and least affluent widened to around 2.5 years (men:2.4 years, 95% confidence interval (95%CI) 0.4-4.4; women:2.6 years, 95%CI 0.7-4.5) by 2011. Incident disability reduced for the most affluent women (Relative Risk Ratio (RRR):0.6, 95%CI 0.4-0.9), and mortality with disability reduced for least affluent men (RRR:0.6, 95%CI 0.5-0.8). MLTCs prevalence increased only for least affluent men (1991: 58.8%, 2011: 66.9%) and women (1991: 60.9%, 2011: 69.1%). However, DFLE inequalities were as large in people without MLTCs (men:2.4 years, 95%CI 0.3-4.5; women:3.1 years, 95% CI 0.8-5.4). INTERPRETATION: : Widening DFLE inequalities were not solely due to MLTCs. Reduced disability incidence with MLTCs is possible but was only achieved in the most affluent.

20.
Nutrients ; 13(8)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34444732

RESUMO

Physical activity and protein intake are associated with ageing-related outcomes, including loss of muscle strength and functional decline, so may contribute to strategies to improve healthy ageing. We investigated the cross-sectional associations between physical activity or sedentary behaviour and protein intake patterns in community-dwelling older adults across five countries. Self-reported physical activity and dietary intake data were obtained from two cohort studies (Newcastle 85+ Study, UK; LiLACS, New Zealand Maori and Non-Maori) and three national food consumption surveys (DNFCS, The Netherlands; FINDIET, Finland; INRAN-SCAI, Italy). Associations between physical activity and total protein intake, number of eating occasions providing protein, number of meals with specified protein thresholds, and protein intake distribution over the day (calculated as a coefficient of variance) were assessed by regression and repeated measures ANOVA models adjusting for covariates. Greater physical activity was associated with higher total protein intake and more eating occasions containing protein, although associations were mostly explained by higher energy intake. Comparable associations were observed for sedentary behaviour in older adults in Italy. Evidence for older people with higher physical activity or less sedentary behaviour achieving more meals with specified protein levels was mixed across the five countries. A skewed protein distribution was observed, with most protein consumed at midday and evening meals without significant differences between physical activity or sedentary behaviour levels. Findings from this multi-study analysis indicate there is little evidence that total protein and protein intake patterns, irrespective of energy intake, differ by physical activity or sedentary behaviour levels in older adults.


Assuntos
Proteínas Alimentares , Exercício Físico , Comportamento Alimentar , Comportamento Sedentário , Idoso de 80 Anos ou mais , Estudos Transversais , Ingestão de Energia , Feminino , Finlândia , Humanos , Vida Independente , Itália , Masculino , Refeições , Países Baixos , Nova Zelândia , Reino Unido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA