Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(18): e2322692121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38652744

RESUMO

Food intake and energy balance are tightly regulated by a group of hypothalamic arcuate neurons expressing the proopiomelanocortin (POMC) gene. In mammals, arcuate-specific POMC expression is driven by two cis-acting transcriptional enhancers known as nPE1 and nPE2. Because mutant mice lacking these two enhancers still showed hypothalamic Pomc mRNA, we searched for additional elements contributing to arcuate Pomc expression. By combining molecular evolution with reporter gene expression in transgenic zebrafish and mice, here, we identified a mammalian arcuate-specific Pomc enhancer that we named nPE3, carrying several binding sites also present in nPE1 and nPE2 for transcription factors known to activate neuronal Pomc expression, such as ISL1, NKX2.1, and ERα. We found that nPE3 originated in the lineage leading to placental mammals and remained under purifying selection in all mammalian orders, although it was lost in Simiiformes (monkeys, apes, and humans) following a unique segmental deletion event. Interestingly, ablation of nPE3 from the mouse genome led to a drastic reduction (>70%) in hypothalamic Pomc mRNA during development and only moderate (<33%) in adult mice. Comparison between double (nPE1 and nPE2) and triple (nPE1, nPE2, and nPE3) enhancer mutants revealed the relative contribution of nPE3 to hypothalamic Pomc expression and its importance in the control of food intake and adiposity in male and female mice. Altogether, these results demonstrate that nPE3 integrates a tripartite cluster of partially redundant enhancers that originated upon a triple convergent evolutionary process in mammals and that is critical for hypothalamic Pomc expression and body weight homeostasis.


Assuntos
Peso Corporal , Ingestão de Alimentos , Elementos Facilitadores Genéticos , Hipotálamo , Pró-Opiomelanocortina , Peixe-Zebra , Animais , Pró-Opiomelanocortina/metabolismo , Pró-Opiomelanocortina/genética , Camundongos , Hipotálamo/metabolismo , Ingestão de Alimentos/genética , Ingestão de Alimentos/fisiologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Feminino , Masculino , Camundongos Transgênicos , Humanos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Mamíferos/metabolismo , Mamíferos/genética
2.
Neuropeptides ; 96: 102289, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36155088

RESUMO

RATIONALE: Obesity is a major health problem worldwide. An understanding of the factors that drive feeding behaviors is key to the development of pharmaceuticals to decrease appetite and consumption. Proopiomelanocortin (POMC), the melanocortin peptide precursor, is essential in the regulation of body weight and ingestive behaviors. Deletion of POMC or impairment of melanocortin signaling in the brain results in hyperphagic obesity. Neurons in the hypothalamic arcuate nucleus produce POMC and project to many areas including the nucleus accumbens (NAcc), which is well established in the rewarding and reinforcing effects of both food and drugs of abuse. OBJECTIVE: These studies sought to determine the role of melanocortins in the NAcc on consumption of and motivation to obtain access to standard rodent chow. METHODS: Male, C57BL/6J mice were microinjected bilaterally into the NAcc (100 nl/side) with the melanocortin receptor 3/4 agonist melanotan-II (MT-II; 0.1, 0.3, and 1 nmol), and ingestive behaviors were examined in both home cage and operant food self-administration experiments. In addition, the ability of MT-II in the NAcc to produce aversive properties or affect metabolic rate were tested. RESULTS: MT-II injected into the NAcc significantly decreased consumption in both home cage and operant paradigms, and furthermore decreased appetitive responding to gain access to food. There was no development of conditioned taste avoidance or change in metabolic parameters following anorexic doses of MT-II. CONCLUSIONS: MT-II in the NAcc decreased both the motivation to eat and the amount of food consumed without inducing an aversive state or affecting metabolic rate, suggesting a role for melanocortin signaling in the NAcc that is selective for appetite and satiety without affecting metabolism or producing an aversive state.


Assuntos
Núcleo Accumbens , Peptídeos Cíclicos , Pró-Opiomelanocortina , Receptor Tipo 4 de Melanocortina , alfa-MSH , Animais , Masculino , Camundongos , Melanocortinas/metabolismo , Camundongos Endogâmicos C57BL , Obesidade , Pró-Opiomelanocortina/metabolismo , Receptor Tipo 4 de Melanocortina/agonistas , Peptídeos Cíclicos/farmacologia , alfa-MSH/análogos & derivados , alfa-MSH/farmacologia
3.
Endocrinology ; 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35245347

RESUMO

PCSK1 encodes an enzyme required for prohormone maturation into bioactive peptides. A striking number of SNPs and rare mutations in PCSK1 are associated with a range of clinical phenotypes. Infants bearing two copies of a catalytically inactivating mutation, such as G209R, exhibit life-threatening chronic diarrhea and subsequently develop systemic endocrinopathies. Using CRISPR/Cas9 technology, we have engineered a mouse model bearing a G209R missense mutation in exon 6 of the murine Pcsk1 locus. Most pups homozygous for the G209R mutation succumbed by day 2, and surviving pups were severely dwarfed. In homozygous (but not heterozygous) pups, blood glucose levels were significantly lower, accompanied by elevated plasma insulin-like immunoreactivity and accumulation of large quantities of unprocessed proinsulin in the pancreas. Peptide hormone processing was also aberrant in G209R mouse pituitary, with mature ACTH levels markedly reduced in homozygotes, accompanied by a significant accumulation of POMC. We also observed a significant reduction in PC1/3 protein in the brains of G209R homozygous mice by Western blotting, while PC2 levels remained unaffected. Most likely due to the continued presence of PC2, pituitary and brain levels of α-MSH were not impaired. Analysis of intestinal cell types indicated a modest reduction of enteroendocrine cells in G209R homozygotes. We suggest that the G209R Pcsk1 mouse model recapitulates many of the dramatic neonatal deficiencies of human patients with this homozygous mutation.

4.
Elife ; 112022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-35044906

RESUMO

Proopiomelanocortin (POMC) neurons of the hypothalamic arcuate nucleus are essential to regulate food intake and energy balance. However, the ontogenetic transcriptional programs that specify the identity and functioning of these neurons are poorly understood. Here, we use single-cell RNA-sequencing (scRNA-seq) to define the transcriptomes characterizing Pomc-expressing cells in the developing hypothalamus and translating ribosome affinity purification with RNA-sequencing (TRAP-seq) to analyze the subsequent translatomes of mature POMC neurons. Our data showed that Pomc-expressing neurons give rise to multiple developmental pathways expressing different levels of Pomc and unique combinations of transcription factors. The predominant cluster, featured by high levels of Pomc and Prdm12 transcripts, represents the canonical arcuate POMC neurons. Additional cell clusters expressing medium or low levels of Pomc mature into different neuronal phenotypes featured by distinct sets of transcription factors, neuropeptides, processing enzymes, cell surface, and nuclear receptors. We conclude that the genetic programs specifying the identity and differentiation of arcuate POMC neurons are diverse and generate a heterogeneous repertoire of neuronal phenotypes early in development that continue to mature postnatally.


Assuntos
Hipotálamo/metabolismo , Neurônios/metabolismo , Fenótipo , Transcriptoma , Animais , Camundongos , Pró-Opiomelanocortina/metabolismo , RNA-Seq , Análise de Célula Única
5.
Mol Metab ; 53: 101312, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34329773

RESUMO

OBJECTIVE: Proopiomelanocortin (POMC) neurons of the hypothalamic arcuate nucleus are essential regulators of energy balance. Selective loss of POMC production in these cells results in extreme obesity and metabolic comorbidities. Neurogenesis occurs in the adult hypothalamus, but it remains uncertain whether functional POMC neurons emerge in physiologically significant numbers during adulthood. Here, we tested whether Rax-expressing precursors generate POMC neurons in adult mice and rescue the metabolic phenotype caused by congenital hypothalamic POMC deficiency. METHODS: Initially, we identified hypothalamic Rax-expressing cell types using wild-type and Rax-CreERT2:Ai34D mice. Then we generated compound Rax-CreERT2:ArcPomcloxTB/loxTB mice in which endogenous hypothalamic Pomc expression is silenced, but can be restored by tamoxifen administration selectively in neurons derived from Rax+ progenitors. The number of POMC neurons generated by Rax+ progenitors in adult mice and their axonal projections was determined. The metabolic effects of these neurons were assessed by measuring food intake, bodyweight, and body composition, along with glucose and insulin levels. RESULTS: We found that Rax is expressed by tanycytes and a previously unrecognized cell type in the hypothalamic parenchyma of adult mice. Rax+ progenitors generated ~10% of the normal adult hypothalamic POMC neuron population within two weeks of tamoxifen treatment. The same rate and steady state of POMC neurogenesis persisted from young adult to aged mice. These new POMC neurons established terminal projections to brain regions that were involved in energy homeostasis. Mice with Rax+ progenitor-derived POMC neurons had reduced body fat mass, improved glucose tolerance, increased insulin sensitivity, and decreased bodyweight in proportion to the number of new POMC neurons. CONCLUSIONS: These data demonstrate that Rax+ progenitors generate POMC neurons in sufficient numbers during adulthood to mitigate the metabolic abnormalities of hypothalamic POMC-deficient mice. The findings suggest that adult hypothalamic neurogenesis is a robust phenomenon in mice that can significantly impact energy homeostasis.


Assuntos
Insuficiência Adrenal/metabolismo , Proteínas do Olho/metabolismo , Proteínas de Homeodomínio/metabolismo , Hipotálamo/metabolismo , Neurônios/metabolismo , Obesidade/metabolismo , Pró-Opiomelanocortina/deficiência , Pró-Opiomelanocortina/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas do Olho/genética , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Fatores de Transcrição/genética
6.
Endocrinology ; 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33693631

RESUMO

Pro-opiomelanocortin (POMC) neurons form an integral part of the central melanocortin system regulating food intake and energy expenditure. Genetic and pharmacological studies have revealed that defects in POMC synthesis, processing, and receptor signaling lead to obesity. It is well established that POMC is extensively processed by a series of enzymes, including prohormone convertases PC1/3 and PC2, and that genetic insufficiency of both PC1/3 and POMC is strongly associated with obesity risk. However, whether PC1/3-mediated POMC processing is absolutely tied to body weight regulation is not known. To investigate this question, we generated a Pomc-CreER  T2; Pcsk1  lox/lox mouse model in which Pcsk1 is specifically and temporally knocked out in POMC-expressing cells of adult mice by injecting tamoxifen at eight weeks of age. We then measured the impact of Pcsk1 deletion on POMC cleavage to ACTH and α-MSH, and on body weight. In whole pituitary, POMC cleavage was significantly impacted by the loss of Pcsk1, while hypothalamic POMC-derived peptide levels remained similar in all genotypes. However, intact POMC levels were greatly elevated in Pomc-CreER  T2; Pcsk1  lox/lox mice. Males expressed two-fold greater levels of pituitary PC1/3 protein than females, consistent with their increased POMC cleavage. Past studies show that mice with germline removal of PC1/3 do not develop obesity, while mice expressing mutant PC1/3 forms do develop obesity. We conclude that obesity pathways are not disrupted by PC1/3 loss solely in POMC-expressing cells, further disfavoring the idea that alterations in POMC processing underlie obesity in PCSK1 deficiency.

7.
PLoS One ; 15(12): e0244793, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33382813

RESUMO

Enhancer redundancy has been postulated to provide a buffer for gene expression against genetic and environmental perturbations. While work in Drosophila has identified functionally overlapping enhancers, work in mammalian models has been limited. Recently, we have identified two partially redundant enhancers, nPE1 and nPE2, that drive proopiomelanocortin gene expression in the hypothalamus. Here we demonstrate that deletion of nPE1 produces mild obesity while knockout of nPE2 has no discernible metabolic phenotypes. Additionally, we show that acute leptin administration has significant effects on nPE1 knockout mice, with food intake and body weight change significantly impacted by peripheral leptin treatment. nPE1 knockout mice became less responsive to leptin treatment over time as percent body weight change increased over 2 week exposure to peripheral leptin. Both Pomc and Agrp mRNA were not differentially affected by chronic leptin treatment however we did see a decrease in Pomc and Agrp mRNA in both nPE1 and nPE2 knockout calorie restricted mice as compared to calorie restricted PBS-treated WT mice. Collectively, these data suggest dynamic regulation of Pomc by nPE1 such that mice with nPE1 knockout become less responsive to the anorectic effects of leptin treatment over time. Our results also support our earlier findings in which nPE2 may only be critical in adult mice that lack nPE1, indicating that these neural enhancers work synergistically to influence metabolism.


Assuntos
Depressores do Apetite/farmacologia , Peso Corporal/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Elementos Facilitadores Genéticos , Hipotálamo/efeitos dos fármacos , Leptina/farmacologia , Neurônios/efeitos dos fármacos , Pró-Opiomelanocortina/genética , Animais , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Knockout , Neurônios/metabolismo
8.
Mol Metab ; 35: 100957, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32244188

RESUMO

OBJECTIVE: The steep rise in the prevalence of obesity and its related metabolic syndrome have become a major worldwide health concerns. Melanocortin peptides from hypothalamic arcuate nucleus (Arc) POMC neurons induce satiety to limit food intake. Consequently, Arc Pomc-deficient mice (ArcPomc-/-) exhibit hyperphagia and obesity. Previous studies demonstrated that the circulating levels of adiponectin, a protein abundantly produced and secreted by fat cells, negatively correlate with obesity in both rodents and humans. However, we found that ArcPomc-/- mice have increased circulating adiponectin levels despite obesity. Therefore, we investigated the physiological function and underlying mechanisms of hypothalamic POMC in regulating systemic adiponectin levels. METHODS: Circulating adiponectin was measured in obese ArcPomc-/- mice at ages 4-52 weeks. To determine whether increased adiponectin was a direct result of ArcPomc deficiency or a secondary effect of obesity, we examined plasma adiponectin levels in calorie-restricted mice with or without a history of obesity and in ArcPomc-/- mice before and after genetic restoration of Pomc expression in the hypothalamus. To delineate the mechanisms causing increased adiponectin in ArcPomc-/- mice, we determined sympathetic outflow to adipose tissue by assessing epinephrine, norepinephrine, and tyrosine hydroxylase protein levels and measured the circulating adiponectin in the mice after acute norepinephrine or propranolol treatments. In addition, adiponectin mRNA and protein levels were measured in discrete adipose tissue depots to ascertain which fat depots contributed the most to the high level of adiponectin in the ArcPomc-/- mice. Finally, we generated compound Adiopoq-/-:ArcPomc-/- mice and compared their growth, body composition, and glucose homeostasis to the individual knockout mouse strains and their wild-type controls. RESULTS: Obese ArcPomc-/- female mice had unexpectedly increased plasma adiponectin compared to wild-type siblings at all ages greater than 8 weeks. Despite chronic calorie restriction to achieve normal body weights, higher adiponectin levels persisted in the ArcPomc-/- female mice. Genetic restoration of Pomc expression in the Arc or acute treatment of the ArcPomc-/- female mice with melanotan II reduced adiponectin levels to control littermate values. The ArcPomc-/- mice had defective thermogenesis and decreased epinephrine, norepinephrine, and tyrosine hydroxylase protein levels in their fat pads, indicating reduced sympathetic outflow to adipose tissue. Injections of norepinephrine into the ArcPomc-/- female mice reduced circulating adiponectin levels, whereas injections of propranolol significantly increased adiponectin levels. Despite the beneficial effects of adiponectin on metabolism, the deletion of adiponectin alleles in the ArcPomc-/- mice did not exacerbate their metabolic abnormalities. CONCLUSION: In summary, to the best of our knowledge, this study provides the first evidence that despite obesity, the ArcPomc-/- mouse model has high circulating adiponectin levels, which demonstrated that increased fat mass is not necessarily correlated with hypoadiponectinemia. Our investigation also found a previously unknown physiological pathway connecting POMC neurons via the sympathetic nervous system to circulating adiponectin, thereby shedding light on the biological regulation of adiponectin.


Assuntos
Adiponectina/sangue , Núcleo Arqueado do Hipotálamo/metabolismo , Neurônios/metabolismo , Obesidade/sangue , Pró-Opiomelanocortina/deficiência , Adiponectina/deficiência , Adiponectina/metabolismo , Tecido Adiposo/metabolismo , Animais , Restrição Calórica , Modelos Animais de Doenças , Feminino , Melanocortinas/metabolismo , Erros Inatos do Metabolismo/metabolismo , Camundongos , Camundongos Knockout , Peptídeos Cíclicos/farmacologia , Pró-Opiomelanocortina/genética , Transdução de Sinais/efeitos dos fármacos , Sistema Nervoso Simpático/metabolismo , alfa-MSH/análogos & derivados , alfa-MSH/farmacologia
9.
Mol Metab ; 34: 43-53, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32180559

RESUMO

OBJECTIVE: Regulation of food intake and energy balance depends on a group of hypothalamic neurons that release anorexigenic melanocortins encoded by the Pomc gene. Although the physiological importance of central melanocortins is well appreciated, the genetic program that defines the functional identity of melanocortin neurons and assures high levels of hypothalamic Pomc expression is only beginning to be understood. This study assessed whether the transcriptional regulator PRDM12, identified as a highly expressed gene in adult mouse POMC neurons, plays an important role in the identity and function of melanocortin neurons. METHODS: We first determined the cellular distribution of PRDM12 in the developing hypothalamus. Then we studied mutant mice with constitutively inactivated Prdm12 to evaluate possible changes in hypothalamic Pomc expression. In addition, we characterized conditional mutant mice specifically lacking Prdm12 in ISL1-positive or POMC neurons during development. Finally, we measured food intake, body weight progression up to 16 weeks of age, adiposity, and glucose tolerance in adult mice lacking Prdm12 selectively from POMC neurons. RESULTS: PRDM12 co-expressed with POMC in mouse hypothalamic neurons from early development to adulthood. Mice lacking Prdm12 displayed greatly reduced Pomc expression in the developing hypothalamus. Selective ablation of Prdm12 from ISL1 neurons prevented hypothalamic Pomc expression. The conditional ablation of Prdm12 limited to POMC neurons greatly reduced Pomc expression in the developing hypothalamus and in adult mice led to increased food intake, adiposity, and obesity. CONCLUSIONS: Altogether, our results demonstrate that PRDM12 plays an essential role in the early establishment of hypothalamic melanocortin neuron identity and the maintenance of high expression levels of Pomc. Its absence in adult mice greatly impairs Pomc expression and leads to increased food intake, adiposity, and obesity.


Assuntos
Adiposidade , Peso Corporal , Proteínas de Transporte/metabolismo , Ingestão de Alimentos , Hipotálamo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Pró-Opiomelanocortina/genética , Animais , Proteínas de Transporte/genética , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Gravidez , Pró-Opiomelanocortina/metabolismo
10.
J Endocrinol ; 245(1): 115-127, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32027603

RESUMO

Proopiomelanocortin (POMC) neurons in the hypothalamic arcuate nucleus (ARC) are essential for normal energy homeostasis. Maximal ARC Pomc transcription is dependent on neuronal Pomc enhancer 1 (nPE1), located 12 kb upstream from the promoter. Selective deletion of nPE1 in mice decreases ARC Pomc expression by 70%, sufficient to induce mild obesity. Because nPE1 is located exclusively in the genomes of placental mammals, we questioned whether its hypomorphic mutation would also alter placental Pomc expression and the metabolic adaptations associated with pregnancy and lactation. We assessed placental development, pup growth, circulating leptin and expression of Pomc, Agrp and alternatively spliced leptin receptor (LepR) isoforms in the ARC and placenta of Pomc∆1/∆1 and Pomc+/+ dams. Despite indistinguishable body weights, lean mass, food intake, placental histology and Pomc expression and overall pregnancy outcomes between the genotypes, Pomc ∆1/∆1 females had increased pre-pregnancy fat mass that paradoxically decreased to control levels by parturition. However, Pomc∆1/∆1 dams had exaggerated increases in circulating leptin, up to twice of that of the typically elevated levels in Pomc+/+ mice at the end of pregnancy, despite their equivalent fat mass. Pomc∆1/∆1dams also had increased placental expression of soluble leptin receptor (LepRe), although the protein levels of LEPRE in circulation were the same as Pomc+/+ controls. Together, these data suggest that the hypomorphic Pomc∆1/∆1 allele is responsible for the perinatal super hyperleptinemia of Pomc∆1/∆1 dams, possibly due to upregulated leptin secretion from individual adipocytes.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Leptina/metabolismo , Neurônios/metabolismo , Pró-Opiomelanocortina/genética , Adiposidade/genética , Alelos , Animais , Núcleo Arqueado do Hipotálamo/citologia , Peso Corporal , Feminino , Leptina/sangue , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Placenta/embriologia , Placenta/metabolismo , Gravidez , Pró-Opiomelanocortina/metabolismo , Receptores para Leptina/genética , Receptores para Leptina/metabolismo
11.
Endocrinology ; 160(11): 2630-2645, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31504391

RESUMO

Common mutations in the human prohormone convertase (PC)1/3 gene (PCKSI) are linked to increased risk of obesity. Previous work has shown that the rs6232 single-nucleotide polymorphism (N221D) results in slightly decreased activity, although whether this decrease underlies obesity risk is not clear. We observed significantly decreased activity of the N221D PC1/3 enzyme at the pH of the trans-Golgi network; at this pH, the mutant enzyme was less stable than wild-type enzyme. Recombinant N221D PC1/3 also showed enhanced susceptibility to heat stress. Enhanced susceptibility to tunicamycin-induced endoplasmic reticulum stress was observed in AtT-20/PC2 cell clones in which murine PC1/3 was replaced by human N221D PC1/3, as compared with wild-type human PC1/3. However, N221D PC1/3-expressing AtT-20/PC2 clones processed proopiomelanocortin to α-MSH similarly to wild-type PC1/3. We also generated a CRISPR-edited mouse line expressing the N221D mutation in the PCKSI gene. When homozygous N221D mice were fed either a standard or a high-fat diet, we found no increase in body weight compared with their wild-type sibling controls. Sexual dimorphism was observed in pituitary ACTH for both genotypes, with females exhibiting lower levels of pituitary ACTH. In contrast, hypothalamic α-MSH content for both genotypes was higher in females compared with males. Hypothalamic corticotropin-like intermediate peptide content was higher in wild-type females compared with wild-type, but not N221D, males. Taken together, these data suggest that the increased obesity risk linked to the N221D allele in humans may be due in part to PC1/3-induced loss of resilience to stressors rather than strictly to decreased enzymatic activity on peptide precursors.


Assuntos
Obesidade/genética , Pró-Proteína Convertase 1/metabolismo , Animais , Estresse do Retículo Endoplasmático , Estabilidade Enzimática , Feminino , Intolerância à Glucose , Humanos , Concentração de Íons de Hidrogênio , Hipotálamo/metabolismo , Masculino , Camundongos , Neuropeptídeo Y/metabolismo , Hipófise/metabolismo , Polimorfismo de Nucleotídeo Único , Pró-Opiomelanocortina/metabolismo , Pró-Proteína Convertase 1/genética , Caracteres Sexuais , alfa-MSH/metabolismo
12.
Genes Brain Behav ; 18(8): e12600, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31339663

RESUMO

Persistent alterations of proopiomelanocortin (Pomc) and mu-opioid receptor (Oprm1) activity and stress responses after alcohol are critically involved in vulnerability to alcohol dependency. Gene transcriptional regulation altered by alcohol may play important roles. Mice with genome-wide deletion of neuronal Pomc enhancer1 (nPE1-/- ), had hypothalamic-specific partial reductions of beta-endorphin and displayed lower alcohol consumption, compared to wildtype littermates (nPE1+/+ ). We used RNA-Seq to measure steady-state nuclear mRNA transcripts of opioid and stress genes in hypothalamus of nPE1+/+ and nPE1-/- mice after 1-day acute withdrawal from chronic excessive alcohol drinking or after water. nPE1-/- had lower basal Pomc and Pdyn (prodynorphin) levels compared to nPE1+/+ , coupled with increased basal Oprm1 and Oprk1 (kappa-opioid receptor) levels, and low alcohol drinking increased Pomc and Pdyn to the basal levels of nPE1+/+ in the water group, without significant effects on Oprm1 and Oprk1. In nPE1+/+ , excessive alcohol intake increased Pomc and Oprm1, with no effect on Pdyn or Oprk1. For stress genes, nPE1-/- had lowered basal Oxt (oxytocin) and Avp (arginine vasopressin) that were restored by low alcohol intake to basal levels of nPE1+/+ . In nPE1+/+ , excessive alcohol intake decreased Oxt and Avpi1 (AVP-induced protein1). Functionally examining the effect of pharmacological blockade of mu-opioid receptor, we found that naltrexone reduced excessive alcohol intake in nPE1+/+ , but not nPE1-/- . Our results provide evidence relevant to the transcriptional profiling of the critical genes in mouse hypothalamus: enhanced opioid and reduced stress gene transcripts after acute withdrawal from excessive alcohol may contribute to altered reward and stress responses.


Assuntos
Consumo Excessivo de Bebidas Alcoólicas/genética , Elementos Facilitadores Genéticos/genética , Hipotálamo/metabolismo , Pró-Opiomelanocortina/genética , Animais , Arginina Vasopressina/metabolismo , Consumo Excessivo de Bebidas Alcoólicas/metabolismo , Encefalinas/genética , Encefalinas/metabolismo , Etanol/farmacologia , Hipotálamo/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ocitocina/metabolismo , Pró-Opiomelanocortina/metabolismo , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Receptores Opioides mu/genética , Receptores Opioides mu/metabolismo , Transcriptoma
13.
eNeuro ; 6(2)2019.
Artigo em Inglês | MEDLINE | ID: mdl-30957016

RESUMO

Hypothalamic POMC deficiency leads to obesity and metabolic deficiencies, largely due to the loss of melanocortin peptides. However, POMC neurons in the arcuate nucleus (ARC) are comprised of glutamatergic and GABAergic subpopulations. The developmental program, relative proportion and function of these two subpopulations are unresolved. To test whether glutamatergic POMC neurons serve a distinct role in maintaining energy homeostasis, we activated Pomc expression Cre- dependently in Vglut2-expressing neurons of mice with conditionally silenced Pomc alleles. The Vglut2-Pomc restored mice had normal ARC Pomc mRNA levels, POMC immunoreactivity, as well as body weight and body composition at age 12 weeks. Unexpectedly, the cumulative total of Vglut2+ glutamatergic- and Gad67+ GABAergic-Pomc neurons detected by in situ hybridization (ISH) exceeded 100% in both Vglut2- Pomc restored and control mice, indicating that a subpopulation of Pomc neurons must express both neuronal markers. Consistent with this hypothesis, triple ISH of C57BL/6J hypothalami revealed that 35% of ARC Pomc neurons were selectively Gad67+, 21% were selectively Vglut2+, and 38% expressed both Gad67 and Vglut2. The single Gad67+ and Vglut2+Pomc neurons were most prevalent in the rostral ARC, while the Vglut2/Gad67+ dual-phenotype cells predominated in the caudal ARC. A lineage trace using Ai9-tdTomato reporter mice to label fluorescently all Vglut2-expressing neurons showed equal numbers of tdTomato+ and tdTomato- POMC immunoreactive neurons. Together, these data suggest that POMC neurons exhibit developmental plasticity in their expression of glutamatergic and GABAergic markers, enabling re-establishment of normal energy homeostasis in the Vglut2-Pomc restored mice.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Metabolismo Energético/fisiologia , Neurônios/metabolismo , Neurotransmissores/metabolismo , Pró-Opiomelanocortina/metabolismo , Animais , Feminino , Ácido Glutâmico/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo
14.
Pharmacol Biochem Behav ; 181: 28-36, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30991059

RESUMO

A fixed dose combination of bupropion (BPP) and naltrexone (NTX), Contrave®, is an FDA approved pharmacotherapy for the treatment of obesity. A recent study found that combining BPP with low-dose NTX reduced alcohol drinking in alcohol-preferring male rats. To explore potential pharmacological effects of the BPP + NTX combination on alcohol drinking, both male and female C57Bl/6J mice were tested on one-week drinking-in-the dark (DID) and three-week intermittent access (IA) models. Neuronal proopiomelanocortin (POMC) enhancer knockout (nPE-/-) mice with hypothalamic-specific deficiency of POMC, and its bioactive peptides melanocyte stimulating hormone and beta-endorphin, were used as a genetic control for the effects of the BPP + NTX. A single administration of BPP + NTX (10 mg/kg + 1 mg/kg) decreased alcohol intake after DID in C57Bl/6J males, but not females. Also in C57Bl/6J males, BPP + NTX reduced intake of the caloric reinforcer sucrose, but not the non-caloric reinforcer saccharin. In contrast, BPP + NTX had no effect on alcohol DID in nPE-/- males. Pretreatment with the selective melanocortin 4 receptor (MC4R) antagonist HS014 reversed the anti-dipsogenic effect of BPP + NTX on alcohol DID in C57Bl/6J males. In the 3-week chronic IA model, single or repeated administrations for four days of BPP + NTX reduced alcohol intake and preference in C57Bl/6J males only. The behavioral measures observed in C57Bl/6J mice provide clear evidence that BPP + NTX profoundly reduced alcohol drinking in males, but the doses tested were not effective in females. Furthermore, our results suggest a hypothalamic POMC/MC4R-dependent mechanism for the observed BPP + NTX effects on alcohol drinking in male mice.


Assuntos
Consumo de Bebidas Alcoólicas/tratamento farmacológico , Alcoolismo/tratamento farmacológico , Bupropiona/farmacologia , Bupropiona/uso terapêutico , Avaliação Pré-Clínica de Medicamentos/métodos , Naltrexona/farmacologia , Naltrexona/uso terapêutico , Animais , Comportamento Animal/efeitos dos fármacos , Bupropiona/administração & dosagem , Combinação de Medicamentos , Sinergismo Farmacológico , Etanol/administração & dosagem , Feminino , Técnicas de Inativação de Genes , Hipotálamo/metabolismo , Injeções Intraperitoneais , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Naltrexona/administração & dosagem , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/uso terapêutico , Fotoperíodo , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , Receptor Tipo 4 de Melanocortina/antagonistas & inibidores , Receptor Tipo 4 de Melanocortina/metabolismo , Sacarina/farmacologia , Fatores Sexuais , Sacarose/farmacologia
15.
J Neurosci ; 39(21): 4023-4035, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-30886014

RESUMO

Food intake is tightly regulated by a group of neurons present in the arcuate nucleus of the hypothalamus, which release Pomc-encoded melanocortins, the absence of which induces marked hyperphagia and early-onset obesity. Although the relevance of hypothalamic POMC neurons in the regulation of body weight and energy balance is well appreciated, little is known about the transcription factors that establish the melanocortin neuron identity during brain development and its phenotypic maintenance in postnatal life. Here, we report that the transcription factor NKX2.1 is present in mouse hypothalamic POMC neurons from early development to adulthood. Electromobility shift assays showed that NKX2.1 binds in vitro to NKX binding motifs present in the neuronal Pomc enhancers nPE1 and nPE2 and chromatin immunoprecipitation assays detected in vivo binding of NKX2.1 to nPE1 and nPE2 in mouse hypothalamic extracts. Transgenic and mutant studies performed in mouse embryos of either sex and adult males showed that the NKX motifs present in nPE1 and nPE2 are essential for their transcriptional enhancer activity. The conditional early inactivation of Nkx2.1 in the ventral hypothalamus prevented the onset of Pomc expression. Selective Nkx2.1 ablation from POMC neurons decreased Pomc expression in adult males and mildly increased their body weight and adiposity. Our results demonstrate that NKX2.1 is necessary to activate Pomc expression by binding to conserved canonical NKX motifs present in nPE1 and nPE2. Therefore, NKX2.1 plays a critical role in the early establishment of hypothalamic melanocortin neuron identity and participates in the maintenance of Pomc expression levels during adulthood.SIGNIFICANCE STATEMENT Food intake and body weight regulation depend on hypothalamic neurons that release satiety-inducing neuropeptides, known as melanocortins. Central melanocortins are encoded byPomc, and Pomc mutations may lead to hyperphagia and severe obesity. Although the importance of central melanocortins is well appreciated, the genetic program that establishes and maintains fully functional POMC neurons remains to be explored. Here, we combined molecular, genetic, developmental, and functional studies that led to the discovery of NKX2.1, a transcription factor that participates in the early morphogenesis of the developing hypothalamus, as a key player in establishing the early identity of melanocortin neurons by activating Pomc expression. Thus, Nkx2.1 adds to the growing list of genes that participate in body weight regulation and adiposity.


Assuntos
Melanocortinas/metabolismo , Neurogênese/fisiologia , Neurônios/metabolismo , Pró-Opiomelanocortina/metabolismo , Fator Nuclear 1 de Tireoide/metabolismo , Animais , Peso Corporal/fisiologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Hipotálamo/embriologia , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
16.
Mol Metab ; 20: 194-204, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30503832

RESUMO

OBJECTIVE: Life-threatening hypoglycemia is a major limiting factor in the management of diabetes. While it is known that counterregulatory responses to hypoglycemia are impaired in diabetes, molecular mechanisms underlying the reduced responses remain unclear. Given the established roles of the hypothalamic proopiomelanocortin (POMC)/melanocortin 4 receptor (MC4R) circuit in regulating sympathetic nervous system (SNS) activity and the SNS in stimulating counterregulatory responses to hypoglycemia, we hypothesized that hypothalamic POMC as well as MC4R, a receptor for POMC derived melanocyte stimulating hormones, is required for normal hypoglycemia counterregulation. METHODS: To test the hypothesis, we induced hypoglycemia or glucopenia in separate cohorts of mice deficient in either POMC or MC4R in the arcuate nucleus (ARC) or the paraventricular nucleus of the hypothalamus (PVH), respectively, and measured their circulating counterregulatory hormones. In addition, we performed a hyperinsulinemic-hypoglycemic clamp study to further validate the function of MC4R in hypoglycemia counterregulation. We also measured Pomc and Mc4r mRNA levels in the ARC and PVH, respectively, in the streptozotocin-induced type 1 diabetes mouse model and non-obese diabetic (NOD) mice to delineate molecular mechanisms by which diabetes deteriorates the defense systems against hypoglycemia. Finally, we treated diabetic mice with the MC4R agonist MTII, administered stereotaxically into the PVH, to determine its potential for restoring the counterregulatory response to hypoglycemia in diabetes. RESULTS: Stimulation of epinephrine and glucagon release in response to hypoglycemia or glucopenia was diminished in both POMC- and MC4R-deficient mice, relative to their littermate controls. Similarly, the counterregulatory response was impaired in association with decreased hypothalamic Pomc and Mc4r expression in the diabetic mice, a phenotype that was not reversed by insulin treatment which normalized glycemia. In contrast, infusion of an MC4R agonist in the PVH restored the counterregulatory response in diabetic mice. CONCLUSION: In conclusion, hypothalamic Pomc as well as Mc4r, both of which are reduced in type 1 diabetic mice, are required for normal counterregulatory responses to hypoglycemia. Therefore, enhancing MC4R function may improve hypoglycemia counterregulation in diabetes.


Assuntos
Hipoglicemia/metabolismo , Hipotálamo/metabolismo , Pró-Opiomelanocortina/metabolismo , Receptor Tipo 4 de Melanocortina/metabolismo , Animais , Epinefrina/metabolismo , Glucagon/metabolismo , Homeostase , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Pró-Opiomelanocortina/deficiência , Pró-Opiomelanocortina/genética , Receptor Tipo 4 de Melanocortina/deficiência , Receptor Tipo 4 de Melanocortina/genética
17.
ACS Chem Neurosci ; 10(4): 1960-1969, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30384585

RESUMO

Cocaine is a highly abused drug, and cocaine addiction affects millions of individuals worldwide. Cocaine blocks normal uptake function at the dopamine transporter (DAT), thus increasing extracellular dopamine. Currently, no chemical therapies are available to treat cocaine abuse. Previous works showed that the selective inhibitors of protein kinase Cß (PKCß), enzastaurin and ruboxistaurin, attenuate dopamine overflow and locomotion stimulated by another psychostimulant drug, amphetamine. We now test if ruboxistaurin similarly affects cocaine action. Perfusion of 1 µM ruboxistaurin directly into the core of the nucleus accumbens via retrodialysis reduced cocaine-stimulated increases in dopamine overflow, measured using microdialysis sampling, with simultaneous reductions in locomotor behavior. Because cocaine activity is highly regulated by dopamine autoreceptors, we examined whether ruboxistaurin was acting at the level of the D2 autoreceptor. Perfusion of 5 µM raclopride, a selective D2-like receptor antagonist, before addition of ruboxistaurin, abrogated the effect of ruboxistaurin on cocaine-stimulated dopamine overflow and hyperlocomotion. Further, ruboxistaurin was inactive against cocaine-stimulated locomotor activity in mice with a genetic deletion in D2 receptors as compared to wild-type mice. In contrast, blockade or deletion of dopamine D2 receptors did not abolish the attenuating effect of ruboxistaurin on amphetamine-stimulated activities. Therefore, the inhibition of PKCß reduces dopamine overflow and locomotor activity stimulated by both cocaine and amphetamine, but the mechanism of action differs for each stimulant. These data suggest that inhibition of PKCß would serve as a target to reduce the abuse of either amphetamine or cocaine.


Assuntos
Autorreceptores/metabolismo , Cocaína/administração & dosagem , Inibidores da Captação de Dopamina/administração & dosagem , Dopamina/metabolismo , Líquido Extracelular/metabolismo , Indóis/administração & dosagem , Maleimidas/administração & dosagem , Animais , Autorreceptores/agonistas , Inibidores Enzimáticos/administração & dosagem , Líquido Extracelular/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D2/metabolismo
18.
J Clin Invest ; 128(3): 1125-1140, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29457782

RESUMO

Pro-opiomelanocortin (POMC) neurons function as key regulators of metabolism and physiology by releasing prohormone-derived neuropeptides with distinct biological activities. However, our understanding of early events in prohormone maturation in the ER remains incomplete. Highlighting the significance of this gap in knowledge, a single POMC cysteine-to-phenylalanine mutation at position 28 (POMC-C28F) is defective for ER processing and causes early onset obesity in a dominant-negative manner in humans through an unclear mechanism. Here, we report a pathologically important role of Sel1L-Hrd1, the protein complex of ER-associated degradation (ERAD), within POMC neurons. Mice with POMC neuron-specific Sel1L deficiency developed age-associated obesity due, at least in part, to the ER retention of POMC that led to hyperphagia. The Sel1L-Hrd1 complex targets a fraction of nascent POMC molecules for ubiquitination and proteasomal degradation, preventing accumulation of misfolded and aggregated POMC, thereby ensuring that another fraction of POMC can undergo normal posttranslational processing and trafficking for secretion. Moreover, we found that the disease-associated POMC-C28F mutant evades ERAD and becomes aggregated due to the presence of a highly reactive unpaired cysteine thiol at position 50. Thus, this study not only identifies ERAD as an important mechanism regulating POMC maturation within the ER, but also provides insights into the pathogenesis of monogenic obesity associated with defective prohormone folding.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Retículo Endoplasmático/patologia , Hipotálamo/patologia , Obesidade/patologia , Pró-Opiomelanocortina/metabolismo , Animais , Axônios , Cisteína/química , Comportamento Alimentar , Feminino , Proteínas de Fluorescência Verde/metabolismo , Humanos , Inflamação , Peptídeos e Proteínas de Sinalização Intracelular , Leptina/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Neurônios/metabolismo , Fenilalanina/química , Pró-Opiomelanocortina/genética , Proteínas/metabolismo , Compostos de Sulfidrila , Ubiquitina/química , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
19.
Bioelectron Med ; 4: 7, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-32232083

RESUMO

BACKGROUND: The role of the kidney in glucose homeostasis has gained global interest. Kidneys are innervated by renal nerves, and renal denervation animal models have shown improved glucose regulation. We hypothesized that stimulation of renal nerves at kilohertz frequencies, which can block propagation of action potentials, would increase urine glucose excretion. Conversely, we hypothesized that low frequency stimulation, which has been shown to increase renal nerve activity, would decrease urine glucose excretion. METHODS: We performed non-survival experiments on male rats under thiobutabarbital anesthesia. A cuff electrode was placed around the left renal artery, encircling the renal nerves. Ureters were cannulated bilaterally to obtain urine samples from each kidney independently for comparison. Renal nerves were stimulated at kilohertz frequencies (1-50 kHz) or low frequencies (2-5 Hz), with intravenous administration of a glucose bolus shortly into the 25-40-min stimulation period. Urine samples were collected at 5-10-min intervals, and colorimetric assays were used to quantify glucose excretion and concentration between stimulated and non-stimulated kidneys. A Kruskal-Wallis test was performed across all stimulation frequencies (α = 0.05), followed by a post-hoc Wilcoxon rank sum test with Bonferroni correction (α = 0.005). RESULTS: For kilohertz frequency trials, the stimulated kidney yielded a higher average total urine glucose excretion at 33 kHz (+ 24.5%; n = 9) than 1 kHz (- 5.9%; n = 6) and 50 kHz (+ 2.3%; n = 14). In low frequency stimulation trials, 5 Hz stimulation led to a lower average total urine glucose excretion (- 40.4%; n = 6) than 2 Hz (- 27.2%; n = 5). The average total urine glucose excretion between 33 kHz and 5 Hz was statistically significant (p < 0.005). Similar outcomes were observed for urine flow rate, which may suggest an associated response. No trends or statistical significance were observed for urine glucose concentrations. CONCLUSION: To our knowledge, this is the first study to investigate electrical stimulation of renal nerves to modulate urine glucose excretion. Our experimental results show that stimulation of renal nerves may modulate urine glucose excretion, however, this response may be associated with urine flow rate. Future work is needed to examine the underlying mechanisms and identify approaches for enhancing regulation of glucose excretion.

20.
Alcohol Clin Exp Res ; 42(1): 195-205, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29105118

RESUMO

BACKGROUND: A recent clinical trial found that pharmacological blockade of V1b receptors reduces alcohol relapse in alcohol-dependent patients. SSR149415 is a selective V1b receptor antagonist that has potential for development as an alcohol dependency treatment. In this study, we investigated whether SSR149415 alone or in combination with the mu-opioid receptor (MOP-r) antagonist naltrexone (NTN) would alter excessive alcohol drinking in mice. METHODS: Both sexes of C57BL/6J (B6) mice were subjected to a chronic intermittent access (IA) drinking paradigm (2-bottle choice, 24-hour access every other day) for 3 weeks. Sucrose and saccharin drinking were used as controls for alcohol-specific drug effects. Neuronal proopiomelanocortin (POMC) enhancer (nPE) knockout mice with hypothalamic-specific loss of POMC (including beta-endorphin, the main endogenous ligand of MOP-r) were used as a genetic control for the effects of NTN. RESULTS: Acute administration of SSR149415 (1 to 30 mg/kg) reduced alcohol intake and preference in a dose-dependent manner in both male and female B6 mice after IA. To investigate potential synergistic effects between NTN and SSR149415, we tested 6 different combination doses of SSR149415 and NTN, and found that a combination of SSR149415 (3 mg/kg) and NTN (1 mg/kg) reduced alcohol intake profoundly at doses lower than the individual effective doses in both sexes of B6 mice. We confirmed the effect of SSR149415 on reducing alcohol intake in nPE-/- male mice, consistent with independent mechanisms by which SSR149415 and NTN decrease alcohol drinking. CONCLUSIONS: The combination of V1b antagonist SSR149415 with NTN at individual subthreshold doses shows potential in alcoholism treatment, possibly with less adverse effects.


Assuntos
Consumo de Bebidas Alcoólicas/tratamento farmacológico , Antagonistas dos Receptores de Hormônios Antidiuréticos/administração & dosagem , Indóis/administração & dosagem , Naltrexona/administração & dosagem , Antagonistas de Entorpecentes/administração & dosagem , Pirrolidinas/administração & dosagem , Receptores de Vasopressinas , Consumo de Bebidas Alcoólicas/genética , Consumo de Bebidas Alcoólicas/psicologia , Animais , Sinergismo Farmacológico , Quimioterapia Combinada , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA