Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Hum Genet ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902431

RESUMO

Glycosylphosphatidylinositol (GPI)-anchored proteins are located at the cell surface by a covalent attachment between protein and GPI embedded in the plasma membrane. This attachment is catalyzed by GPI transamidase comprising five subunits (PIGK, PIGS, PIGT, PIGU, and GPAA1) in the endoplasmic reticulum. Loss of either subunit of GPI transamidase eliminates cell surface localization of GPI-anchored proteins. In humans, pathogenic variants in either subunit of GPI transamidase cause neurodevelopmental disorders. However, how the loss of GPI-anchored proteins triggers neurodevelopmental defects remains largely unclear. Here, we identified a novel homozygous variant of PIGK, NM_005482:c.481A > G,p. (Met161Val), in a Japanese female patient with neurodevelopmental delay, hypotonia, cerebellar atrophy, febrile seizures, hearing loss, growth impairment, dysmorphic facial features, and brachydactyly. The missense variant was found heterozygous in her father, but not in her mother. Zygosity analysis revealed that the homozygous PIGK variant in the patient was caused by paternal isodisomy. Rescue experiments using PIGK-deficient CHO cells revealed that the p.Met161Val variant of PIGK reduced GPI transamidase activity. Rescue experiments using pigk mutant zebrafish confirmed that the p.Met161Val variant compromised PIGK function in tactile-evoked motor response. We also demonstrated that axonal localization of voltage-gated sodium channels and concomitant generation of action potentials were impaired in pigk-deficient neurons in zebrafish, suggesting a link between GPI-anchored proteins and neuronal defects. Taken together, the missense p.Met161Val variant of PIGK is a novel pathogenic variant that causes the neurodevelopmental disorder.

2.
Proc Natl Acad Sci U S A ; 112(9): 2859-64, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25691753

RESUMO

Following their synthesis in the endoplasmic reticulum (ER), voltage-gated sodium channels (NaV) are transported to the membranes of excitable cells, where they often cluster, such as at the axon initial segment of neurons. Although the mechanisms by which NaV channels form and maintain clusters have been extensively examined, the processes that govern their transport and degradation have received less attention. Our entry into the study of these processes began with the isolation of a new allele of the zebrafish mutant alligator, which we found to be caused by mutations in the gene encoding really interesting new gene (RING) finger protein 121 (RNF121), an E3-ubiquitin ligase present in the ER and cis-Golgi compartments. Here we demonstrate that RNF121 facilitates two opposing fates of NaV channels: (i) ubiquitin-mediated proteasome degradation and (ii) membrane localization when coexpressed with auxiliary NaVß subunits. Collectively, these results indicate that RNF121 participates in the quality control of NaV channels during their synthesis and subsequent transport to the membrane.


Assuntos
Proteólise , Domínios RING Finger , Ubiquitina-Proteína Ligases/metabolismo , Canais de Sódio Disparados por Voltagem/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Sequência de Bases , Membrana Celular/genética , Membrana Celular/metabolismo , Dados de Sequência Molecular , Mutação , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Transporte Proteico/fisiologia , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Canais de Sódio Disparados por Voltagem/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
3.
Dis Model Mech ; 5(6): 852-9, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22645112

RESUMO

Myotubular myopathy (MTM) is a severe congenital muscle disease characterized by profound weakness, early respiratory failure and premature lethality. MTM is defined by muscle biopsy findings that include centralized nuclei and disorganization of perinuclear organelles. No treatments currently exist for MTM. We hypothesized that aberrant neuromuscular junction (NMJ) transmission is an important and potentially treatable aspect of the disease pathogenesis. We tested this hypothesis in two murine models of MTM. In both models we uncovered evidence of a disorder of NMJ transmission: fatigable weakness, improved strength with neostigmine, and electrodecrement with repetitive nerve stimulation. Histopathological analysis revealed abnormalities in the organization, appearance and size of individual NMJs, abnormalities that correlated with changes in acetylcholine receptor gene expression and subcellular localization. We additionally determined the ability of pyridostigmine, an acetylcholinesterase inhibitor, to ameliorate aspects of the behavioral phenotype related to NMJ dysfunction. Pyridostigmine treatment resulted in significant improvement in fatigable weakness and treadmill endurance. In all, these results describe a newly identified pathological abnormality in MTM, and uncover a potential disease-modifying therapy for this devastating disorder.


Assuntos
Modelos Animais de Doenças , Miopatias Congênitas Estruturais/patologia , Miopatias Congênitas Estruturais/terapia , Junção Neuromuscular/patologia , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Miopatias Congênitas Estruturais/fisiopatologia , Neuregulina-1/metabolismo , Junção Neuromuscular/efeitos dos fármacos , Junção Neuromuscular/fisiopatologia , Junção Neuromuscular/ultraestrutura , Fenótipo , Brometo de Piridostigmina/farmacologia , Receptores Colinérgicos/genética , Receptores Colinérgicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transmissão Sináptica/efeitos dos fármacos
4.
J Neurophysiol ; 108(1): 148-59, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22490555

RESUMO

The molecular and physiological basis of the touch-unresponsive zebrafish mutant fakir has remained elusive. Here we report that the fakir phenotype is caused by a missense mutation in the gene encoding voltage-gated calcium channel 2.1b (CACNA1Ab). Injection of RNA encoding wild-type CaV2.1 restores touch responsiveness in fakir mutants, whereas knockdown of CACNA1Ab via morpholino oligonucleotides recapitulates the fakir mutant phenotype. Fakir mutants display normal current-evoked synaptic communication at the neuromuscular junction but have attenuated touch-evoked activation of motor neurons. NMDA-evoked fictive swimming is not affected by the loss of CaV2.1b, suggesting that this channel is not required for motor pattern generation. These results, coupled with the expression of CACNA1Ab by sensory neurons, suggest that CaV2.1b channel activity is necessary for touch-evoked activation of the locomotor network in zebrafish.


Assuntos
Canais de Cálcio Tipo N/metabolismo , Ativação do Canal Iônico/genética , Tato/genética , Acetilcolina/farmacologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/genética , Vias Aferentes/fisiologia , Animais , Animais Geneticamente Modificados , Bungarotoxinas/metabolismo , Canais de Cálcio Tipo N/genética , Curare/farmacologia , Relação Dose-Resposta a Droga , Embrião não Mamífero , Reação de Fuga/efeitos dos fármacos , Reação de Fuga/fisiologia , Potenciais Evocados/genética , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Leucina/genética , Locomoção/efeitos dos fármacos , Locomoção/genética , Modelos Moleculares , Morfolinas/farmacologia , Atividade Motora/genética , Neurônios Motores/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiologia , Mutagênese Sítio-Dirigida/métodos , Mutação/genética , Mutação de Sentido Incorreto/genética , Rede Nervosa/fisiologia , Antagonistas Nicotínicos/farmacologia , Medula Espinal/citologia , Medula Espinal/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/genética , Tato/fisiologia , Valina/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
5.
J Biol Chem ; 287(2): 1080-9, 2012 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-22075003

RESUMO

In many tissues and organs, connexin proteins assemble between neighboring cells to form gap junctions. These gap junctions facilitate direct intercellular communication between adjoining cells, allowing for the transmission of both chemical and electrical signals. In rodents, gap junctions are found in differentiating myoblasts and are important for myogenesis. Although gap junctions were once believed to be absent from differentiated skeletal muscle in mammals, recent studies in teleosts revealed that differentiated muscle does express connexins and is electrically coupled, at least at the larval stage. These findings raised questions regarding the functional significance of gap junctions in differentiated muscle. Our analysis of gap junctions in muscle began with the isolation of a zebrafish motor mutant that displayed weak coiling at day 1 of development, a behavior known to be driven by slow-twitch muscle (slow muscle). We identified a missense mutation in the gene encoding Connexin 39.9. In situ hybridization found connexin 39.9 to be expressed by slow muscle. Paired muscle recordings uncovered that wild-type slow muscles are electrically coupled, whereas mutant slow muscles are not. The further examination of cellular activity revealed aberrant, arrhythmic touch-evoked Ca(2+) transients in mutant slow muscle and a reduction in the number of muscle fibers contracting in response to touch in mutants. These results indicate that Connexin 39.9 facilitates the spreading of neuronal inputs, which is irregular during motor development, beyond the muscle cells and that gap junctions play an essential role in the efficient recruitment of slow muscle fibers.


Assuntos
Conexinas/metabolismo , Proteínas Musculares/metabolismo , Mutação de Sentido Incorreto , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Sequência de Bases , Conexinas/genética , Junções Comunicantes/genética , Junções Comunicantes/metabolismo , Regulação da Expressão Gênica/genética , Dados de Sequência Molecular , Fibras Musculares de Contração Lenta , Proteínas Musculares/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
6.
J Neurosci ; 31(32): 11633-44, 2011 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-21832193

RESUMO

Mutations in the gene encoding TRPM7 (trpm7), a member of the Transient Receptor Potential (TRP) superfamily of cation channels that possesses an enzymatically active kinase at its C terminus, cause the touch-unresponsive zebrafish mutant touchdown. We identified and characterized a new allele of touchdown, as well as two previously reported alleles, and found that all three alleles harbor mutations that abolish channel activity. Through the selective restoration of TRPM7 expression in sensory neurons, we found that TRPM7's kinase activity and selectivity for divalent cations over monovalent cations were dispensable for touch-evoked activation of escape behaviors in zebrafish. Additional characterization revealed that sensory neurons were present and capable of responding to tactile stimuli in touchdown mutants, indicating that TRPM7 is not required for sensory neuron survival or mechanosensation. Finally, exposure to elevated concentrations of divalent cations was found to restore touch-evoked behaviors in touchdown mutants. Collectively, these findings are consistent with a role for zebrafish TRPM7 within sensory neurons in the modulation of neurotransmitter release at central synapses, similar to that proposed for mammalian TRPM7 at peripheral synapses.


Assuntos
Alelos , Reação de Fuga/fisiologia , Células Receptoras Sensoriais/fisiologia , Canais de Cátion TRPM/fisiologia , Tato/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Animais , Animais Geneticamente Modificados , Feminino , Sistema Nervoso Periférico/citologia , Sistema Nervoso Periférico/metabolismo , Sistema Nervoso Periférico/fisiologia , Proteínas Serina-Treonina Quinases , Especificidade da Espécie , Canais de Cátion TRPM/genética , Tato/genética , Xenopus , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
7.
J Neurosci ; 30(28): 9359-67, 2010 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-20631165

RESUMO

The process by which light touch in vertebrates is transformed into an electrical response in cutaneous mechanosensitive neurons is a largely unresolved question. To address this question we undertook a forward genetic screen in zebrafish (Danio rerio) to identify mutants exhibiting abnormal touch-evoked behaviors, despite the presence of sensory neurons and peripheral neurites. One family, subsequently named touché, was found to harbor a recessive mutation which produced offspring that were unresponsive to light touch, but responded to a variety of other sensory stimuli. The optogenetic activation of motor behaviors by touché mutant sensory neurons expressing channelrhodopsin-2 suggested that the synaptic output of sensory neurons was intact, consistent with a defect in sensory neuron activation. To explore sensory neuron activation we developed an in vivo preparation permitting the precise placement of a combined electrical and tactile stimulating probe upon eGFP-positive peripheral neurites. In wild-type larva electrical and tactile stimulation of peripheral neurites produced action potentials detectable within the cell body. In a subset of these sensory neurons an underlying generator potential could be observed in response to subthreshold tactile stimuli. A closer examination revealed that the amplitude of the generator potential was proportional to the stimulus amplitude. When assayed touché mutant sensory neurons also responded to electrical stimulation of peripheral neurites similar to wild-type larvae, however tactile stimulation of these neurites failed to uncover a subset of sensory neurons possessing generator potentials. These findings suggest that touché is required for generator potentials, and that cutaneous mechanoreceptors with generator potentials are necessary for responsiveness to light touch in zebrafish.


Assuntos
Potenciais Somatossensoriais Evocados/fisiologia , Células Receptoras Sensoriais/fisiologia , Transdução de Sinais/fisiologia , Tato/fisiologia , Proteínas de Peixe-Zebra/genética , Animais , Eletrofisiologia , Rede Nervosa/fisiologia , Neurônios Aferentes/fisiologia , Estimulação Física , Peixe-Zebra/genética
8.
Dev Neurobiol ; 70(7): 508-22, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20225246

RESUMO

A screen for zebrafish motor mutants identified two noncomplementing alleles of a recessive mutation that were named non-active (nav(mi89) and nav(mi130)). nav embryos displayed diminished spontaneous and touch-evoked escape behaviors during the first 3 days of development. Genetic mapping identified the gene encoding Na(V)1.6a (scn8aa) as a potential candidate for nav. Subsequent cloning of scn8aa from the two alleles of nav uncovered two missense mutations in Na(V)1.6a that eliminated channel activity when assayed heterologously. Furthermore, the injection of RNA encoding wild-type scn8aa rescued the nav mutant phenotype indicating that scn8aa was the causative gene of nav. In-vivo electrophysiological analysis of the touch-evoked escape circuit indicated that voltage-dependent inward current was decreased in mechanosensory neurons in mutants, but they were able to fire action potentials. Furthermore, tactile stimulation of mutants activated some neurons downstream of mechanosensory neurons but failed to activate the swim locomotor circuit in accord with the behavioral response of initial escape contractions but no swimming. Thus, mutant mechanosensory neurons appeared to respond to tactile stimulation but failed to initiate swimming. Interestingly fictive swimming could be initiated pharmacologically suggesting that a swim circuit was present in mutants. These results suggested that Na(V)1.6a was required for touch-induced activation of the swim locomotor network.


Assuntos
Sistema Nervoso Central/embriologia , Rede Nervosa/embriologia , Canais de Sódio/fisiologia , Natação/fisiologia , Tato/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/embriologia , Potenciais de Ação/genética , Potenciais de Ação/fisiologia , Animais , Comportamento Animal/fisiologia , Sistema Nervoso Central/crescimento & desenvolvimento , Sistema Nervoso Central/metabolismo , Mapeamento Cromossômico , Feminino , Masculino , Mecanorreceptores/citologia , Mecanorreceptores/metabolismo , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto/genética , Canal de Sódio Disparado por Voltagem NAV1.6 , Rede Nervosa/crescimento & desenvolvimento , Rede Nervosa/metabolismo , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/metabolismo , Canais de Sódio/genética , Tato/genética , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/fisiologia , Proteínas de Peixe-Zebra/genética
9.
PLoS Genet ; 5(2): e1000372, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19197364

RESUMO

Myotubularin is a lipid phosphatase implicated in endosomal trafficking in vitro, but with an unknown function in vivo. Mutations in myotubularin cause myotubular myopathy, a devastating congenital myopathy with unclear pathogenesis and no current therapies. Myotubular myopathy was the first described of a growing list of conditions caused by mutations in proteins implicated in membrane trafficking. To advance the understanding of myotubularin function and disease pathogenesis, we have created a zebrafish model of myotubular myopathy using morpholino antisense technology. Zebrafish with reduced levels of myotubularin have significantly impaired motor function and obvious histopathologic changes in their muscle. These changes include abnormally shaped and positioned nuclei and myofiber hypotrophy. These findings are consistent with those observed in the human disease. We demonstrate for the first time that myotubularin functions to regulate PI3P levels in a vertebrate in vivo, and that homologous myotubularin-related proteins can functionally compensate for the loss of myotubularin. Finally, we identify abnormalities in the tubulo-reticular network in muscle from myotubularin zebrafish morphants and correlate these changes with abnormalities in T-tubule organization in biopsies from patients with myotubular myopathy. In all, we have generated a new model of myotubular myopathy and employed this model to uncover a novel function for myotubularin and a new pathomechanism for the human disease that may explain the weakness associated with the condition (defective excitation-contraction coupling). In addition, our findings of tubuloreticular abnormalities and defective excitation-contraction coupling mechanistically link myotubular myopathy with several other inherited muscle diseases, most notably those due to ryanodine receptor mutations. Based on our findings, we speculate that congenital myopathies, usually considered entities with similar clinical features but very disparate pathomechanisms, may at their root be disorders of calcium homeostasis.


Assuntos
Fibras Musculares Esqueléticas/ultraestrutura , Miopatias Congênitas Estruturais/etiologia , Miopatias Congênitas Estruturais/patologia , Proteínas Tirosina Fosfatases não Receptoras/fisiologia , Peixe-Zebra/genética , Animais , Modelos Animais de Doenças , Embrião não Mamífero/metabolismo , Imunofluorescência , Homeostase , Humanos , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/metabolismo , Mutação , Miopatias Congênitas Estruturais/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/genética , Peixe-Zebra/metabolismo
10.
Purinergic Signal ; 4(4): 383-92, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18850305

RESUMO

Several zebrafish P2X receptors (zP2X(1), zP2X(2), and zP2X(5.1)) have been reported to produce little or no current although their mammalian orthologs produce functional homomeric receptors. We isolated new cDNA clones for these P2X receptors that revealed sequence variations in each. The new variants of zP2X(1) and zP2X(5.1) produced substantial currents when expressed by Xenopus oocytes, however the new variant of zP2X(2) was still nonfunctional. zP2X(2) lacks two lysine residues essential for ATP responsiveness in other P2X receptors; however introduction of these two lysines was insufficient to allow this receptor to function as a homotrimer. We also tested whether P2X signaling is required for myogenesis or synaptic communication at the zebrafish neuromuscular junction. We found that embryonic skeletal muscle expressed only one P2X receptor, P2X(5.1). Antisense knockdown of P2X(5.1) eliminated skeletal muscle responsiveness to ATP but did not prevent myogenesis or behaviors that require functional transmission at the neuromuscular junction.

11.
J Neurosci ; 25(28): 6610-20, 2005 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-16014722

RESUMO

shocked (sho) is a zebrafish mutation that causes motor deficits attributable to CNS defects during the first2dof development. Mutant embryos display reduced spontaneous coiling of the trunk, diminished escape responses when touched, and an absence of swimming. A missense mutation in the slc6a9 gene that encodes a glycine transporter (GlyT1) was identified as the cause of the sho phenotype. Antisense knock-down of GlyT1 in wild-type embryos phenocopies sho, and injection of wild-type GlyT1 mRNA into mutants rescues them. A comparison of glycine-evoked inward currents in Xenopus oocytes expressing either the wild-type or mutant protein found that the missense mutation results in a nonfunctional transporter. glyt1 and the related glyt2 mRNAs are expressed in the hindbrain and spinal cord in nonoverlapping patterns. The fact that these regions are known to be required for generation of early locomotory behaviors suggests that the regulation of extracellular glycine levels in the CNS is important for proper function of neural networks. Furthermore, physiological analysis after manipulation of glycinergic activity in wild-type and sho embryos suggests that the mutant phenotype is attributable to elevated extracellular glycine within the CNS.


Assuntos
Sistema Nervoso Central/embriologia , Proteínas da Membrana Plasmática de Transporte de Glicina/fisiologia , Glicina/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/genética , Animais , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/patologia , Embrião não Mamífero/fisiopatologia , Líquido Extracelular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Marcação de Genes , Proteínas da Membrana Plasmática de Transporte de Glicina/antagonistas & inibidores , Proteínas da Membrana Plasmática de Transporte de Glicina/deficiência , Proteínas da Membrana Plasmática de Transporte de Glicina/genética , Músculos/embriologia , Músculos/fisiologia , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Oócitos , Fenótipo , Estimulação Física , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Mensageiro/farmacologia , Proteínas Recombinantes de Fusão/metabolismo , Rombencéfalo/embriologia , Rombencéfalo/metabolismo , Sarcosina/análogos & derivados , Sarcosina/farmacologia , Medula Espinal/embriologia , Medula Espinal/metabolismo , Natação , Xenopus , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA